Skip to main content
Log in

Irradiation assisted polyacrylamide gel route for the synthesize of the Mg1–xCoxAl2O4 nano-photocatalysts and its optical and photocatalytic performances

  • Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The present work demonstrated the synthesis of the CoxMg1–xAl2O4 (x = 0.1, 0.2, 0.3, 0.4, and 0.5) photocatalysts with an p–n xMgAl2O4/(1 – x)[CoAl2O4] junction, as novel simulated sunlight-driven photocatalysts at different Co/Mg molar ratios. A gamma-ray irradiation assisted polyacrylamide gel route was used to synthesize the CoxMg1–xAl2O4 pigments. The micro-structure, phase purity, surface morphology, the cation distribution, and the electron level, color, optical and electrochemical properties, and photocatalytic activity of the CoxMg1–xAl2O4 photocatalysts were systematically analyzed. The mean particle size of the CoxMg1–xAl2O4 photocatalysts increases with increase in the x value was demonstrated by TEM. Color and optical properties analysis indicated that the CoxMg1–xAl2O4 photocatalysts exhibits a bright blue color. As the x value increased to 0.2, the b* value of the CoxMg1–xAl2O4 photocatalysts reached to –21.468, it means that the CoxMg1–xAl2O4 possessed low Co content and exhibited a stabilized color and optical properties. Photocatalytic degradation experiments revealed that the CoxMg1–xAl2O4 (x = 0.1) photocatalysts exhibit highest photocatalytic activity for the degradation of the methylene blue (MB) dye under simulated sunlight irradiation. The synergistic effects of the adsorption capacity, light absorption capacity, and superoxide ions (•O2−) played important role for the photocatalytic degradation of the MB dye on the basis of the UV–Vis spectra, XPS analysis, electrochemical test, and photocatalytic degradation experiments

A CoxMg1–xAl2O4 (x = 0.1–0.5) nanoparticles were prepared by an irradiation assisted polyacrylamide gel route. The mean particle size of the CoxMg1–xAl2O4 photocatalysts increases with increase in the x value. The CoxMg1–xAl2O4 photocatalysts possessed low Co content and exhibit a stabilize color (bright blue color) and optical properties. The CoxMg1–xAl2O4 (x = 0.1) photocatalysts shows a novel photocatalytic activity for the degradation of methylene blue dye under simulated sunlight irradiation.

Highlights

  • A novel photocatalyst was synthesized by a gamma-ray irradiation assisted polyacrylamide gel route.

  • The CoxMg1–xAl2O4 photocatalysts possessed low Co content and exhibited a stabilized color and optical properties.

  • The CoxMg1–xAl2O4 (x = 0.1) photocatalyst exhibits high photocatalytic activity for the degradation of the methylene blue dye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Akdemir S, Ozel E, Suvaci E (2011) Ceram Int 37:863–870

    Article  Google Scholar 

  2. Chen Z, Shi E, Li W et al. (2011) Mater Lett 55:281–284

    Article  Google Scholar 

  3. Gholami T, Salavati-Niasari M, Varshoy S (2016) Int J Hydrogen Energ 41:9418–9426

    Article  Google Scholar 

  4. Chen ZZ, Shi EW, Li WJ et al. (2004) Mat Sci Eng B 107:217–223

    Article  Google Scholar 

  5. Cho WS, Kakihana M (1999) Cheminform 30:87–90

    Google Scholar 

  6. Chandradass J, Balasubramanian M, Kim KH (2010) J Alloy Compd 506:395–399

    Article  Google Scholar 

  7. Wang C, Liu S, Liu L et al. (2006) Mater Chem Phys 96:361–370

    Article  Google Scholar 

  8. Štangar UL, Orel B, Krajnc M (2003) J Sol-Gel Sci Techn 26:771–775

    Article  Google Scholar 

  9. Zhou N, Li Y, Zhang Y et al. (2018) Dyes Pigments 148:25–30

    Article  Google Scholar 

  10. Rahmat N, Yaakob Z, Pudukudy M et al. (2018) Powder Technol 329:409–419

    Article  Google Scholar 

  11. Foletto EL, Jahn SL, Muniz Moreira RDFP (2009) Sep Sci Technol 44:2132–2145

    Article  Google Scholar 

  12. Nassar MY, Ahmed IS, Samir I (2014) Spectrochimica Acta A 131:329–334

    Article  Google Scholar 

  13. Qian X, Li B, Mu HY et al. (2017) Inorg Chem Front 4:1832–1840

    Article  Google Scholar 

  14. Li H, Liu Y, Tang J et al. (2016) Solid State Sci 58:14–21

    Article  Google Scholar 

  15. Ianoş R, Lazău R, Barvinschi P (2011) Adv Powder Technol 22:396–400

    Article  Google Scholar 

  16. Llusar M, Fores A, Badenes JA et al. (2001) J Eur Ceram Soc 21:1121–1130

    Article  Google Scholar 

  17. Maslennikova GN (2001) Glass Ceram 58:216–220

    Article  Google Scholar 

  18. Koroleva (Chekhomova) LF (2004) Glass Ceram 61:299–302

    Article  Google Scholar 

  19. Luan C, Yuan D, Duan X et al. (2006) J Sol-Gel Sci Technol 38:245–249

    Article  Google Scholar 

  20. Duan X, Wang X, Yu F et al. (2012) Mater Chem Phys 137:652–659

    Article  Google Scholar 

  21. Ahmed IS, Shama SA, Moustafa MM et al. (2009) Spectrochimica Acta A 74:665–672

    Article  Google Scholar 

  22. Ahmed IS, Shama SA, Dessouki HA et al. (2011) Mater Chem Phys 125:326–333

    Article  Google Scholar 

  23. Khattab RM, Sadek HEH, Gaber AA (2017) Ceram Int 43:234–243

    Article  Google Scholar 

  24. Angeletti C, Pepe F, Porta P (1977) J Chem Soc Faraday T 73:1972–1982

    Article  Google Scholar 

  25. Angeletti C, Pepe F, Porta P (1978) J Chem Soc Faraday T 74:1595–1603

    Article  Google Scholar 

  26. Bao W, Ma F, Zhang Y et al. (2016) Powder Technol 292:7–13

    Article  Google Scholar 

  27. Wang S, Li D, Yang C et al. (2017) J Sol-Gel Sci Technol 84:169–179

    Article  Google Scholar 

  28. Gao H, Yang H, Wang S et al. (2018) J Sol-Gel Sci Technol 86:206–216

    Article  Google Scholar 

  29. Zheng C, Yang H (2018) J Mater Sci-Mater El 29:9291–9300

    Article  Google Scholar 

  30. Wang SF, Zhang C, Sun G et al. (2013) Opt Mater 36:482–488

    Article  Google Scholar 

  31. Kumar PA, Reddy MP, Bae Hyun-Sook BH et al. (2009) Catal Lett 131:85–97

    Article  Google Scholar 

  32. Brambilla R, Radtke C, Dos Santos JHZ et al. (2009) J Sol-Gel Sci Technol 51:70–77

    Article  Google Scholar 

  33. Zsoldos Z, Guczi L (1992) J Phys Chem 96:9393–9400

    Article  Google Scholar 

  34. Chung KS, Masslth FE (1980) J Catal 64:320–331

    Article  Google Scholar 

  35. Duan X, Pan M, Yu F et al. (2011) J Alloy Compd 509:1079–1083

    Article  Google Scholar 

  36. Tshabalalaa KG, Chob SH, Park JK et al. (2011) J Alloys Compd 509:10115–10120

    Article  Google Scholar 

  37. Pawlak DA, Wozniak K, Frukacz Z, Barr TL, Fiorentino D, Seal S (1999) J Phys Chem B 103:1454–1461

    Article  Google Scholar 

  38. Wang S, Gao H, Wei Y et al. (2019) CrystEngComm 21:263–277

    Article  Google Scholar 

  39. Dohnalová Ž, Šulcová P, Trojan M (2009) Dyes Pigments 80:22–25

    Article  Google Scholar 

  40. McLellan MR, Lind LR, Kime RW (1995) J Food Quality 18:235–240

    Article  Google Scholar 

  41. Gao H, Yang H, Wang S et al. (2018) Ceram Int 44:14754–14766

    Article  Google Scholar 

  42. Grazenaite E, Pinkas J, Beganskiene A et al. (2016) Ceram Int 42:9402–9412

    Article  Google Scholar 

  43. Rajabi M, Kharaziyan P, Montazeri-Pour M (2019) J Aust Ceram Soc 55:219–227

    Article  Google Scholar 

  44. Ewais EM, El-Amir AA, Besisa DH et al. (2017) J Alloy Compd 691:822–833

    Article  Google Scholar 

  45. Wang SF, Sun GZ, Fang LM et al. (2015) Sci Rep-UK 5:12849

    Article  Google Scholar 

  46. Cui Z, Yang H, Zhao X (2018) Mat Sci Eng B-Adv 229:160–172

    Article  Google Scholar 

  47. Zhao X, Yang H, Zhang H et al. (2019) Desalin Water Treat 145:326–336

    Article  Google Scholar 

  48. Lin J, Zong R, Zhou M et al. (2009) Appl Catal B: Environ 89:425–431

    Article  Google Scholar 

  49. Gao H, Yang H, Wang S (2018) T Indian Ceram Soc 77:150–160

    Article  Google Scholar 

  50. Butler MA (1977) J Appl Phys 48:1914–1920

    Article  Google Scholar 

  51. Min Y, Zhang K, Zhao W et al. (2012) Chem Eng J 193:203–210

    Article  Google Scholar 

  52. Geng J, Yang D, Zhu J et al. (2009) Mater Res Bull 44:146–150

    Article  Google Scholar 

  53. He H (2016) Micropor Mesopor Mater 227:31–38

    Article  Google Scholar 

  54. Justh N, Mikula GJ, Bakos LP et al. (2019) Carbon 147:476–482

    Article  Google Scholar 

  55. Gao H, Yang H, Yang G et al. (2018) Mater Technol 33:321–332

    Article  Google Scholar 

  56. Xia Y, He Z, Su J et al. (2018) RSC Adv 8:4284–4294

    Article  Google Scholar 

  57. Gao H, Wang F, Wang SF et al. (2019) Mater Res Bull 115:140–149

    Article  Google Scholar 

  58. Xia Y, He Z, Hu K et al. (2018) J Alloy Compd 753:356–363

    Article  Google Scholar 

  59. Xia Y, He Z, Su J et al. (2018) Nanoscale Res Lett 13:148

    Article  Google Scholar 

  60. Xu M, Ye T, Dai F et al. (2015) Chem Sus Chem 8:1218–1225

    Article  Google Scholar 

  61. Kiantazh F, Habibi-Yangjeh A (2015) Mat Sci Semicon Proc 39:671–679

    Article  Google Scholar 

  62. Vinodgopal K, Wynkoop DE, Kamat PV (1996) Environ Sci Technol 30:1660–1666

    Article  Google Scholar 

  63. Yan X, Ohno T, Nishijima K et al. (2006) Chem Phys Lett 429:606–610

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61705025), Chongqing basic research and frontier exploration (general project) (cstc2019jcyj-msxm1327), Gansu Education Department Higher School Research Project (2018A-242), and Major Cultivation Projects of Chongqing Three Gorges University (18ZDPY01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifa Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Gao, H., Chen, C. et al. Irradiation assisted polyacrylamide gel route for the synthesize of the Mg1–xCoxAl2O4 nano-photocatalysts and its optical and photocatalytic performances. J Sol-Gel Sci Technol 92, 186–199 (2019). https://doi.org/10.1007/s10971-019-05062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05062-8

Keywords

Navigation