Skip to main content
Log in

Non-symmetrical bis-silylated precursor can (also) self-direct the assembly of Silsesquioxane films

  • Original Paper: Supramolecular materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Symmetric α,ω-bis-silylated precursors are the standard building blocks of self-assembled bridged silsesquioxanes, a unique class of robust ordered nanomaterials prepared by sol-gel process without external surfactant. We report an unprecedented approach based on the utilization of a dissymmetric bis-silylated precursor, 1,2-bis(trimethoxysilyl)decane (1), in which the two alkoxy groups are carried by adjacent methylene groups. Extensive characterization—based on X-ray diffraction, real-time fourier transform infrared, electron and optical microscopy, 29Si solid-state nuclear magnetic resonance, thermogravimetry, and molecular modeling—shows surprisingly that such non-symmetrical precursor is highly conducive to achieve highly ordered lamellar mesostructure, able to sustain temperature up to 120 °C. To emphasize the effect of the alkoxy group functionality and position, comparison is made systematically with analogous silsesquioxanes derived from bis-(2) and mono-silylated (3) precursors. The sol-gel polymerization of 1 is unique by its ability to produce a homogeneous film possessing structural characteristic on multiple scales: uniform microcrystallites consisting of nanolamellar organosilica hybrid material. The most likely mesostructure consists of bilayers of slightly interpenetrated trans C8H9 chains, with a single central siloxy-hydrocarbon chain (Si2O(OH)4-C2H3) n . To permit a good lateral chain packing, the hydrocarbon chain of two adjacent silicon atoms point in opposite directions.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumar C (2010) Nanostructured thin films and surfaces. Wiley-VCH, Weinheim

    Google Scholar 

  2. Wang J, Cheng Q, Tang Z (2012) Chem Soc Rev 41(3):1111–1129

    Article  Google Scholar 

  3. Gin D, Bara J, Noble R, Elliott B (2008) Macromol Rapid Commun 29(5):367–389

    Article  Google Scholar 

  4. Yan F, Texter J (2006) Adv Colloid Interface Sci 128–130:27–35

    Article  Google Scholar 

  5. Brinker CJ (2004) MRS Bull 29(9):631–640

    Article  Google Scholar 

  6. Wan Y, Zhao D (2007) Chem Rev 107(7):2821–2860

    Article  Google Scholar 

  7. Innocenzi P, Malfatti L (2013) Chem Soc Rev 42(9):4198–4216

    Article  Google Scholar 

  8. Moreau JJE, Vellutini L, Wong Chi Man M, Bied C, Bantignies JL, Dieudonné P, Sauvajol JL (2001) J Am Chem Soc 123(32):7957–7958

    Article  Google Scholar 

  9. Shimojima A, Kuroda K (2003) Angew Chem Int Ed 42(34):4057–4060

    Article  Google Scholar 

  10. Huo Q, Margolese DI, Stucky GD (1996) Chem Mater 8(5):1147–1160

    Article  Google Scholar 

  11. Fujita S, Inagaki S (2008) Chem Mater 20(3):891–908

    Article  Google Scholar 

  12. Mehdi A, Reye C, Corriu R (2011) Chem Soc Rev 40(2):563–574

    Article  Google Scholar 

  13. Chemtob A, Ni L, Croutxé-Barghorn C, Boury B (2014) Chem Eur J 20(7):1790–1806

    Article  Google Scholar 

  14. Yusa S, Ohno S, Honda T, Imoto H, Nakao Y, Naka K, Nakamura Y, Fujii S (2016) RSC Adv 6(77):73006–73012

    Article  Google Scholar 

  15. Bantignies JL, Vellutini L, Maurin D, Hermet P, Dieudonne P, Wong Chi Man M, Bartlett JR, Bied C, Sauvajol JL, Moreau JJE (2006) J Phys Chem B 110(32):15797–15802

    Article  Google Scholar 

  16. Dieudonné P, Wong Chi Man M, Pichon BP, Vellutini L, Bantignies JL, Blanc C, Creff G, Finet S, Sauvajol JL, Bied C, Moreau JJE (2009) Small 5(4):503–510

    Article  Google Scholar 

  17. Boury B, Corriu R (2003) Chem Rec 3(2):120–132

    Article  Google Scholar 

  18. Ruiz-Hitzky E (2005) Organic–inorganic materials: from intercalation chemistry to devices. Functional hybrid materials. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 15–49

  19. Mehdi A (2010) J Mater Chem 20(42):9281–9286

    Article  Google Scholar 

  20. Creff G, Pichon BP, Blanc C, Maurin D, Sauvajol JL, Carcel C, Moreau JJE, Roy P, Bartlett JR, Wong Chi Man M, Bantignies JL (2013) Langmuir 29(18):5581–5588

    Article  Google Scholar 

  21. Cojocariu AM, Cattoen X, Le Parc R, Maurin D, Blanc C, Dieudonne P, Bantignies JL, Wong Chi Man M, Bartlett JR (2016) Phys Chem Chem Phys 18(11):7946–7955

    Article  Google Scholar 

  22. Carlos LD, de Zea Bermudez V, Amaral VS, Nunes SC, Silva NJO, Sá Ferreira RA, Rocha J, Santilli CV, Ostrovskii D (2007) Adv Mater 19(3):341–348

    Article  Google Scholar 

  23. Shimojima A, Sugahara Y, Kuroda K (1998) J Am Chem Soc 120(18):4528–4529

    Article  Google Scholar 

  24. Shimojima A, Sugahara Y, Kuroda K (1997) Bull Chem Soc Jpn 70(11):2847–2853

    Article  Google Scholar 

  25. Moreau JJE, Vellutini L, Wong Chi Man M, Bied C, Dieudonné P, Bantignies JL, Sauvajol JL (2005) Chem Eur J 11(5):1527–1537

    Article  Google Scholar 

  26. Nunes SC, Bürglová K, Hodačová J, Ferreira RAS, Carlos LD, Almeida P, Cattoën X, Wong Chi Man M, de Zea, Bermudez V (2015) Eur J Inorg Chem 2015(7):1218–1225

    Article  Google Scholar 

  27. Croissant JG, Cattoen X, Durand JO, Wong Chi Man M, Khashab NM (2016) Nanoscale 8:19945–19972

    Article  Google Scholar 

  28. Rosen MJ (2004) Surfactants and Interfacial Phenomena. John Wiley & Sons, Inc., New Jersey.

  29. Shimojima A, Liu Z, Ohsuna T, Terasaki O, Kuroda K (2005) J Am Chem Soc 127(40):14108–14116

    Article  Google Scholar 

  30. Shimojima A, Goto R, Atsumi N, Kuroda K (2008) Chem Eur J 14(28):8500–8506

    Article  Google Scholar 

  31. Kuroda K, Shimojima A, Kawahara K, Wakabayashi R, Tamura Y, Asakura Y, Kitahara M (2014) Chem Mater 26:211–220

    Article  Google Scholar 

  32. Shimojima A, Kuge H, Kuroda K (2011) J Sol-Gel Sci Technol 57(3):263–268

    Article  Google Scholar 

  33. Temtsin G, Asefa T, Bittner S, Ozin GA (2001) J Mater Chem 11(12):3202–3206

    Article  Google Scholar 

  34. Yang Q, Kapoor MP, Inagaki S (2002) J Am Chem Soc 124(33):9694–9695

    Article  Google Scholar 

  35. Song LD, Rosen MJ (1996) Langmuir 12(5):1149–1153

    Article  Google Scholar 

  36. Katagiri K, Hashizume M, Ariga K, Terashima T, Kikuchi J (2007) Chem Eur J 13(18):5272–5281

    Article  Google Scholar 

  37. Menger FM, Keiper JS (2000) Angew Chem Int Ed 39(11):1906–1920

    Article  Google Scholar 

  38. Chemtob A, Ni L, Croutxe-Barghorn C, Demarest A, Brendle J, Vidal L, Rigolet S (2011) Langmuir 27(20):12621–12629

    Article  Google Scholar 

  39. Mayo SL, Olafson BD, Goddard WA (1990) J Phys Chem 94(26):8897–8909

    Article  Google Scholar 

  40. Oviatt H, Shea K, James S (1993) Chem Mater 5(7):943–950

    Article  Google Scholar 

  41. Baney RH, Itoh M, Sakakibara A, Suzuki T (1995) Chem Rev 95(5):1409–1430

    Article  Google Scholar 

  42. Ben F, Boury B, Corriu RJP, Le Strat V (2000) Chem Mater 12(11):3249–3252

    Article  Google Scholar 

  43. Arkles B, Pan Y, Larson GL, Singh M (2014) Chem Eur J 20(30):9442–9450

    Article  Google Scholar 

  44. Ni L, Chemtob A, Croutxe-Barghorn C, Brendle J, Vidal L, Rigolet S (2012) J Phys Chem C 116(45):24320–24330

    Article  Google Scholar 

  45. Ni L, Chemtob A, Croutxe-Barghorn C, Brendle J, Vidal L, Rigolet S (2012) J Mater Chem 22:643–652

    Article  Google Scholar 

  46. Fujii K, Fujita T, Iyi N, Kodama H, Kitamura K, Yamagishi A (2003) J Mater Sci Lett 22:1459–1461

    Article  Google Scholar 

  47. Bourlinos AB, Chowdhury SR, Jiang DD, An YU, Zhang Q, Archer LA, Giannelis EP (2005) Small 1:80–82

    Article  Google Scholar 

  48. Fujii K, Kodama H, Iyi N, Fujita T, Kitamura K, Sato H, Yamagishi A, Hayashi S (2013) New J Chem 37:1142–1149

    Article  Google Scholar 

  49. Okamoto K, Goto Y, Inagaki S (2005) J Mater Chem 15(38):4136–4140

    Article  Google Scholar 

  50. Stevens MJ (1999) Langmuir 15(8):2773–2778

    Article  Google Scholar 

  51. Bonhomme F, Kanatzidis MG (1998) Chem Mater 10(4):1153–1159

    Article  Google Scholar 

  52. Wang R, Baran G, Wunder SL (2000) Langmuir 16(15):6298–6305

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Lingli Ni would like to thank the financial support from the National Natural Science Foundation of China (No. 51503072), Natural Science Foundation of Jiangsu Province (No. BK20150419) and Six Talent Peaks Project in Jiangsu Province (No. 2016XCL010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lingli Ni or Abraham Chemtob.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, L., Chemtob, A., Croutxé-Barghorn, C. et al. Non-symmetrical bis-silylated precursor can (also) self-direct the assembly of Silsesquioxane films. J Sol-Gel Sci Technol 84, 222–230 (2017). https://doi.org/10.1007/s10971-017-4482-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4482-0

Keywords

Navigation