Skip to main content
Log in

Experimental and thermodynamic comparison of the separation of CO2/toluene and CO2/tetralin mixtures in the process of organogel supercritical drying for aerogels production

  • Invited Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

An organogel is firstly prepared by synthesizing an aminoacid-type organogelator which is able to immobilize aromatic solvents, such as tetralin or toluene. Aerogels are obtained from organogels by extracting the solvent with a stream of supercritical CO2 in an autoclave. The CO2/solvent mixture leaving the autoclave is separated in a cascade of three cyclone separators. The experimental results showed a good solvent recovery rate in the case of tetralin, exceeding 90%, but an unsatisfactory separation for toluene with a yield below 65%. A thermodynamic study was carried out to model the separation for both solvents. The Peng–Robinson equation of state with van der Waals mixing rules and temperature-dependent binary interaction coefficients was selected to predict the CO2/solvent thermodynamic behavior. Measurements of isothermal bubble points of the CO2/tetralin system were conducted using a high-pressure variable-volume visual cell confirming the relevancy of this model. Then, the first separator was simulated as a simple theoretical equilibrium stage. Simulations using PRO/II software were in good agreement with experimental solvent recovery rate for both toluene and tetralin. The best operating pressure and temperature for the separation were computed by a numerical parametric study.

Graphical abstract

Thermodynamic study to explain theoretical recovery in organogel supercritical drying: comparison between two solvents (T=20 °C, P=50 bar).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hwang S-W, Kim T-Y, Hyun S-H (2010) Effect of surface modification conditions on the synthesis of mesoporous crack-free silica aerogel monoliths from waterglass via ambient-drying. Microporous Mesoporous Mater 130:295–302

    Article  Google Scholar 

  2. Bangi UKH, Venkateswara Rao A, Parvathy Rao A (2008) A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying. Sci Technol Adv Mater 9:035006

    Article  Google Scholar 

  3. Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel; synthesis, properties and characterization. J Mater Process Technol 199:10–26

    Article  Google Scholar 

  4. Gurav JL, Venkateswara Rao A, Nadargi DY (2009) Study of thermal conductivity and effect of humidity on HMDZ modified TEOS based aerogel dried at ambient pressure. J Solgel Sci Technol 50:275–280

    Article  Google Scholar 

  5. Hrubesh LW (1998) Aerogel applications. J Non Cryst Solids 225:335–342

    Article  Google Scholar 

  6. Dunn BC, Cole P, Covington D et al. (2005) Silica aerogel supported catalysts for Fischer–Tropsch synthesis. Appl Catal Gen 278:233–238

    Article  Google Scholar 

  7. Mohammadi A, Moghaddas J (2015) Synthesis, adsorption and regeneration of nanoporous silica aerogel and silica aerogel-activated carbon composites. Chem Eng Res Des 94:475–484

    Article  Google Scholar 

  8. Yoon MY, Hong SK, Hwang HJ (2013) Fabrication of Li-polymer/silica aerogel nanocomposite electrolyte for an all-solid-state lithium battery. Ceram Int 39:9659–9663

    Article  Google Scholar 

  9. Gurav JL, Jung I-K, Park H-H et al. (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:e409310

    Article  Google Scholar 

  10. Brosse N, Barth D, Jamart-Grégoire B (2004) A family of strong low-molecular-weight organogelators based on aminoacid derivatives. Tetrahedron Lett 45:9521–9524

    Article  Google Scholar 

  11. Yemloul M, Steiner E, Robert A, Bouguet-Bonnet S, Allix F, Jamart-Grégoire B, Canet D (2011) Solvent dynamical behavior in an organogel phase as studied by NMR relaxation and diffusion experiments. J Phys Chem B 115:2511–2517

    Article  Google Scholar 

  12. Jamart-Grégoire B, Son S, Allix F, Felix V, Barth D, Pickaert G, Degiovanni D (2016) Monolithic organic aerogels derived from single amino-acid based supramolecular gels: physical and thermal properties. RSC Adv 6:102198–102205

    Article  Google Scholar 

  13. Lazrag M, Mejia-Mendez DL, Lemaitre C, Emmanuel Stafford PH, Hreiz R, Privat R, Hannachi A, Barth D (2016) Thermodynamic and hydrodynamic study of a gas-liquid flow in a cyclone separator downstream supercritical drying. J Supercrit Fluids 118:27–38

    Article  Google Scholar 

  14. Camy S, Condoret J-S (2006) Modelling and experimental study of separators for co-solvent recovery in a supercritical extraction process. J Supercrit Fluids 38:51–61

    Article  Google Scholar 

  15. Camy S, Condoret J-S (2001) Dynamic modelling of a fractionation process for a liquid mixture using supercritical carbon dioxide. Chem Eng Process Process Intensif 40:499–509

    Article  Google Scholar 

  16. Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27:1197–1203

    Article  Google Scholar 

  17. Michelsen ML (1990) A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Phase Equilib 60:213–219

    Article  Google Scholar 

  18. Field LR, Wilhelm E, Battino R (1974) The solubility of gases in liquids 6. Solubility of N2, O2, CO, CO2, CH4, and CF4 in methylcyclohexane and toluene at 283 to 313 K. J Chem Thermodyn 6:237–243

    Article  Google Scholar 

  19. Ng H-J, Robinson DB (1978) Equilibrium-phase properties of the toluene-carbon dioxide system. J Chem Eng Data 23:325–327

    Article  Google Scholar 

  20. Morris WO, Donohue MD (1985) Vapor-liquid equilibria in mixtures containing carbon dioxide, toluene, and 1-methylnaphthalene. J Chem Eng Data 30:259–263

    Article  Google Scholar 

  21. Kim C-H, Vimalchand P, Donohue MD (1986) Vapor-liquid equilibria for binary mixtures of carbon dioxide with benzene, toluene and p-xylene. Fluid Phase Equilib 31:299–311

    Article  Google Scholar 

  22. Fink SD, Hershey HC (1990) Modeling the vapor-liquid equilibria of 1,1,1-trichloroethane + carbon dioxide and toluene + carbon dioxide at 308, 323, and 353 K. Ind Eng Chem Res 29:295–306

    Article  Google Scholar 

  23. Walther D, Platzer B, Maurer G (1992) High-pressure (vapour + liquid) equilibria of (carbon dioxide + methylbenzene or 1,2-dimethylbenzene or 1,3-dimethylbenzene or 1,4-dimethylbenzene) at temperatures between 313 K and 393 K and pressures up to 17.3 MPa. J Chem Thermodyn 24:387–399

    Article  Google Scholar 

  24. Chang CJ (1992) The solubility of carbon dioxide in organic solvents at elevated pressures. Fluid Phase Equilib 74:235–242

    Article  Google Scholar 

  25. Chang CJ, Chen C-Y, Lin H-C (1995) Solubilities of carbon dioxide and nitrous oxide in cyclohexanone, toluene, and N,N-Dimethylformamide at elevated pressures. J Chem Eng Data 40:850–855

    Article  Google Scholar 

  26. Zhang H, Liu Z, Han B (2000) Critical points and phase behavior of toluene-CO2 and toluene-H2-CO2 mixture in CO2-rich region. J Supercrit Fluids 18:185–192

    Article  Google Scholar 

  27. Lazzaroni MJ, Bush D, Brown JS, Eckert CA (2005) High-pressure vapor−liquid equilbria of some carbon dioxide + organic binary systems. J Chem Eng Data 50:60–65

    Article  Google Scholar 

  28. Tochigi K, Hasegawa K, Asano N, Kojima K (1998) Vapor−liquid equilibria for the carbon dioxide + pentane and carbon dioxide + toluene systems. J Chem Eng Data 43:954–956

    Article  Google Scholar 

  29. Lay EN, Taghikhani V, Ghotbi C (2006) Measurement and correlation of CO2 solubility in the systems of CO2 + toluene, CO2 + benzene, and CO2 + n-Hexane at near-critical and supercritical conditions. J Chem Eng Data 51:2197–2200

    Article  Google Scholar 

  30. Vitu S, Privat R, Jaubert J-N, Mutelet F (2008) Predicting the phase equilibria of CO2+hydrocarbon systems with the PPR78 model (PR EOS and kij calculated through a group contribution method). J Supercrit Fluids 45:1–26

    Article  Google Scholar 

  31. Inomata H, Tuchiya K, Arai K, Saito S (1986) Measurement of vapor-liquid equilibria at elevated temperatures and pressures using a flow type apparatus. J Chem Eng Jpn 19:386–391

    Article  Google Scholar 

  32. Kim CH, Clark AB, Vimalchand P, Donohue MD (1989) High-pressure binary phase equilibria of aromatic hydrocarbons with carbon dioxide and ethane. J Chem Eng Data 34:391–395

    Article  Google Scholar 

  33. Chou GF, Forbert RR, Prausnitz JM (1990) High-pressure vapor-liquid equilibria for carbon dioxide/n-decane, carbon dioxide/tetralin, and carbon dioxide/n-decane/tetralin at 71.1 and 104.4.degree. C. J Chem Eng Data 35:26–29

    Article  Google Scholar 

  34. Byun H-S, Kim C-H, Kwak C (1992) High pressure binary phase equilibria of carbon dioxide-tetralin system. Korean Chem Eng Res 30:387–387

    Google Scholar 

  35. Walther D, Maurer G (1993) High-pressure vapor-liquid equilibria for carbon dioxide + benzonitrile, CO2 + benzyl alcohol, CO2 + 2-tert-butylphenol, CO2 + methoxybenzene, and CO2 + 1,2,3,4-tetrahydronaphthalene at temperatures between 313 and 393 K and pressures up to 20 MPa. J Chem Eng Data 38:247–249

    Article  Google Scholar 

  36. Mukhopadhyay M, De SK (1995) Fluid phase behavior of close molecular weight fine chemicals with supercritical carbon dioxide. J Chem Eng Data 40:909–913

    Article  Google Scholar 

  37. Peng D-Y, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Barth.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazrag, M., Steiner, E., Lemaitre, C. et al. Experimental and thermodynamic comparison of the separation of CO2/toluene and CO2/tetralin mixtures in the process of organogel supercritical drying for aerogels production. J Sol-Gel Sci Technol 84, 453–465 (2017). https://doi.org/10.1007/s10971-017-4465-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4465-1

Keywords

Navigation