Skip to main content
Log in

Effect of Mn-substitution on the structure and magnetic properties of CoFe2O4/SiO2 nanocomposites

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mn-substituted CoFe2O4/SiO2 nanocomposites were prepared by sol–gel method using Mn-substituting for Co or Fe. The microstructural, morphological, and magnetic characterizations were carried out by X-ray diffraction, transmission electron microscope, X-ray photoelectron spectroscopy, vibrating sample magnetometer, and Mössbauer spectroscopy. It can be found that the Mn-substituted CoFe2O4 particles in obtained nanocomposites exhibit cubic spinel structure and the substitution of Co or Fe by Mn increase the lattice constant. The results of X-ray photoelectron spectroscopy, vibrating sample magnetometer and Mössbauer spectroscopy demonstrate that Mn ions exists as Mn2+ and tend to preferentially occupy octahedral A sites when it replaces Co ions as in Co0.8Mn0.2Fe2O4/SiO2 nanocomposites, which leads to the saturation magnetization Ms increasing and coercivity Hc decreasing. While Mn ions valence state is +3 as it substitutes to Fe ions as in CoFe1.8Mn0.2O4/SiO2. The presence of Mn3+ induces a decrease in Ms and Hc.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li Y, Fang QF, Liu YM, Lv QR, Yin P (2007) J Magn Magn Mater 313:57–61

    Article  Google Scholar 

  2. Yu YS, Mendoza-Garcia A, Ning B, Sun SH (2013) Adv Mater 25:3090–3094

    Article  Google Scholar 

  3. Toksha BG, Shirsath SE, Patange SM, Jadhav KM (2008) Solid State Commun 147:479–483

    Article  Google Scholar 

  4. Ayyappan S, Mahadevan S, Chandramohan P, Srinivasan MP, Philip J, Raj B (2010) J Phys Chem C 114:6334–6341

    Article  Google Scholar 

  5. Artus M, Tahar LB, Herbst F, Smiri L, Villain F, Yaacoub N, Grenèche JM, Ammar S, Fiévet F (2011) J Phys Condens Matter 23:2590–2598

    Article  Google Scholar 

  6. Msomi JZ, Ndlovu B, Moyo T, Osman NSE (2016) J Alloy Compd 683:149–156

    Article  Google Scholar 

  7. Caltun O, Rao GSN, Rao KH, Rao BP, Dumitru I, Kim CO, Kim CG (2007) J Magn Magn Mater 316:618–620

    Article  Google Scholar 

  8. Devi PI, Rajkumar N, Renganathan B, Sastikumar D, Ramachandran K (2011) IEEE Sens J 11:1395–1402

    Article  Google Scholar 

  9. Zachanowicz E, Zięcina A, Mikołajczyk PA, Rogacki K, Małecka M, Marycz K, Marędziak M, Poźniak B, Nowakowska M, Tikhomirov M, Miller J, Wiglusz RJ, Pązik R (2016) Eur J Inorg Chem 34 5315-5323

  10. Kumar ER, Jayaprakash R, Prakash T (2014) J Magn Magn Mater 358-359:123–127

    Article  Google Scholar 

  11. Bhame SD, Joy PA (2006) J Appl Phys 99:073901–173901-4

    Article  Google Scholar 

  12. Levy D, Pastero L, Hoser A, Viscovo G (2015) Solid State Commun 201:15–19

    Article  Google Scholar 

  13. Hutlova A, Niznansky D, Plocek J, Bursik J, Rehspringer JL (2003) J Sol Gel Sci Technol 26:473–477

    Article  Google Scholar 

  14. Nadeem K, Traussnig T, Letofsky-Papst I, Krenn H, Brossmann U (2010) J Alloy Compd 493:385–390

    Article  Google Scholar 

  15. Li HB, Chen JY, Liu M, Feng M, Hua J (2007) Chem J Chin U 28:614–616

    Google Scholar 

  16. Wang L, Li SS, Li J, Liu M, Xu SC, Li HB (2016) RSC Adv 6:12497–12503

    Article  Google Scholar 

  17. Nadeema K, Zeb F, AzeemAbid M, Mumtaz M, Anis ur Rehman M (2014) J Non-Cryst Solids 400:45–50

    Article  Google Scholar 

  18. Nappini E, Magnano F, Bondino IP, Barla A, Fantechi E, Pineider F, Sangregorio C, Venturelli L, Baglioni P (2015) J Phys Chem C 119:25529–25541

    Article  Google Scholar 

  19. Moussy JB (2013) J Phys D 46:143001–143027

    Article  Google Scholar 

  20. Li M, Mao Y, Yang H, Li W, Wang C, Liu P, Tog Y (2013) New J Chem 37:3116–3120

    Article  Google Scholar 

  21. Bocquet AE, Mizokawa T, Saitoh T, Namatame H, Fujimori A (1992) Phys Rev B 46:3771–3784

    Article  Google Scholar 

  22. Tabata K, Hirano Y, Suzuki E (1998) Appl Catal A 170:245–254

    Article  Google Scholar 

  23. Chinnasamy CN, Jeyadevan B, Shinodak K, Tohji K, Djayaprawira DJ (2003) Appl Phys Lett 83:2862–2864

    Article  Google Scholar 

  24. Stoneham AM (1977) J Phys C 10:1175–1193

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11504132 and 21371071), Foundation of Science and Technology of Jilin, China (No. 201205075).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, M., Du, Y., Ding, S. et al. Effect of Mn-substitution on the structure and magnetic properties of CoFe2O4/SiO2 nanocomposites. J Sol-Gel Sci Technol 82, 712–717 (2017). https://doi.org/10.1007/s10971-017-4353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-017-4353-8

Keywords

Navigation