Skip to main content
Log in

Tailoring the size and electrochemical performance of Mn3O4 nanoparticles by controlling the precipitation process

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Mn3O4 nanoparticles were prepared at 60 °C in ethanol solution by a facile precipitation method. It was found that the particle size of the as-prepared Mn3O4 depended on the alkalinity of precipitants. Nanoparticles with average size of 6 nm were obtained by using morpholine as precipitant which had low alkalinity, while 10 nm particles were produced by using NaOH as precipitant. The former particles presented higher degree electrochemical double-layer capacitor-like behavior and higher electrochemical performance than the latter. This could be attributed to the effective faradaic reactions of particles, which originated from the low equivalent series resistance resulting from their smaller particle size.

Graphical Abstract

Mn3O4 nanoparticles were prepared in ethanol by a facile precipitation method using precipitants with different alkalinity. It was found that smaller particles (a) were generated by using precipitant with low alkalinity as compared with the one with higher alkalinity (b). As a result, the Mn3O4 nanoparticles presented a high-degree electrochemical double-layer capacitor-like behavior due to their low equivalent series resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yan J, Wang Q, Wei T, Fan ZJ (2014) Adv Energy Mater 4:1–43

    Google Scholar 

  2. Chen S, Xing W, Duan JJ, Hu XJ, Qiao SZ (2013) J Mater Chem A 1:2941–2954

    Article  Google Scholar 

  3. Liu S, Sun S, You XZ (2014) Nanoscale 6:2037–2045

    Article  Google Scholar 

  4. Lu Q, Chen JG, Xiao JQ (2013) Angew Chem Int Ed Engl 52:1882–1889

    Article  Google Scholar 

  5. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS (2009) Int J Hydrog Energy 34:4889–4899

    Article  Google Scholar 

  6. Huggins RA (2000) Solid State Ion 134:179–195

    Article  Google Scholar 

  7. Zhu JX, Yang D, Yin ZY, Yan QY, Zhang H (2014) Small 10:3480–3498

    Article  Google Scholar 

  8. Wang GP, Zhang L, Zhang JJ (2012) Chem Soc Rev 41:797–828

    Article  Google Scholar 

  9. Chang JK, Wu CM, Sun IW (2010) J Mater Chem 20:3729–3735

    Article  Google Scholar 

  10. Cao CY, Guo W, Cui ZM, Song WG, Cai W (2011) J Mater Chem 21:3204–3209

    Article  Google Scholar 

  11. Yang J, Lan TB, Liu JD, Song YF, Wei MD (2013) Electrochim Acta 105:489–495

    Article  Google Scholar 

  12. Meng XQ, Zhou M, Li XL, Yao JY, Liu FL, He HC, Xiao P, Zhang YH (2013) Electrochim Acta 109:20–26

    Article  Google Scholar 

  13. Wang L, Ji HM, Wang SS, Kong LJ, Jiang XF, Yang G (2013) Nanoscale 5:3793–3799

    Article  Google Scholar 

  14. Wei WF, Cui XW, Chen WX, Ivey DG (2011) Chem Soc Rev 40:1697–1721

    Article  Google Scholar 

  15. Jiang H, Zhao T, Yan CY, Li CZ (2010) Nanoscale 2:2195–2198

    Article  Google Scholar 

  16. Dong RT, Ye QL, Kuang LL, Zhang X, Tan GJ, Wen YX, Wang F (2013) ACS Appl Mater Interfaces 5:9508–9516

    Article  Google Scholar 

  17. Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD (2010) J Electrochem Soc 157:A812–A817

    Article  Google Scholar 

  18. Dubal DP, Dhawale DS, Salunkhe RR, Fulari VJ, Lokhande CF (2010) J Alloys Compd 497:166–170

    Article  Google Scholar 

  19. Dubal DP, Dhawale DS, Salunkhe RR, Pawar SM, Fulari VJ, Lokhande CD (2009) J Alloys Compd 484:218–221

    Article  Google Scholar 

  20. Nama KW, Kima KB (2006) J Electrochem Soc 153:A81–A88

    Article  Google Scholar 

  21. An GM, Yu P, Xiao MJ, Liu ZM, Miao ZJ, Ding KL, Mao LQ (2008) Nanotechnology 19:275709

    Article  Google Scholar 

  22. Dubal DP, Dhawale DS, Salunkhe RR, Pawar SM, Lokhande CD (2010) Appl Surf Sci 256:4411–4416

    Article  Google Scholar 

  23. Fang M, Tan XL, Liu M, Kang SH, Hua XY, Zhang LD (2011) CrystEngComm 13:4915

    Article  Google Scholar 

  24. Cui XW, Hu FP, Wei WF, Chen WX (2011) Carbon 49:1225–1234

    Article  Google Scholar 

  25. Wu YZ, Liu SQ, Wang HY, Wang XW, Zhang X, Jin GH (2013) Electrochim Acta 90:210–218

    Article  Google Scholar 

  26. Fan YF, Zhang XD, Liu YS, Cai Q, Zhang JM (2013) Mater Lett 95:153–156

    Article  Google Scholar 

  27. Chen XA, Chen XH, Zhang FQ, Yang Z, Huang SM (2013) J Power Sources 243:555–561

    Article  Google Scholar 

  28. Cui HT, Xue JY, Ren WA, Wang MM (2015) J Alloys Compd 645:11–16

    Article  Google Scholar 

  29. Zhou TX, Mo SS, Zhou SL, Zou WJ, Liu YL, Yuan DS (2011) J Mater Sci 46:3337–3342

    Article  Google Scholar 

  30. Dubal DP, Holze R (2013) Energy 51:407–412

    Article  Google Scholar 

  31. He L, Zhang G, Dong Y, Zhang ZW, Xue SH, Jiang XM (2014) Nano-Micro Lett 6:38–45

    Article  Google Scholar 

  32. Lee JW, Hall AS, Kim J, Mallouk TE (2012) Chem Mater 24:1158–1164

    Article  Google Scholar 

  33. Li DW, Meng FH, Yan XL, Yang LS, Heng H, Zhu Y (2013) Nanoscale Res Lett 8:535–542

    Article  Google Scholar 

  34. Wang DW, Li YQ, Wang QH, Wang TM (2012) Eur J Inorg Chem 2012:628–635

    Article  Google Scholar 

  35. Brousse T, Belanger D, Long JW (2015) J Electrochem Soc 162:A5185–A5189

    Article  Google Scholar 

  36. Du C, Pan N (2006) Nanotechnology 17:5314–5318

    Article  Google Scholar 

  37. Vijaya K, Kalpana SD (2012) J Appl Electrochem 42:463–470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongtao Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 154 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, W., Feng, Y., Wang, L. et al. Tailoring the size and electrochemical performance of Mn3O4 nanoparticles by controlling the precipitation process. J Sol-Gel Sci Technol 80, 326–332 (2016). https://doi.org/10.1007/s10971-016-4107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4107-z

Keywords

Navigation