Skip to main content
Log in

Optical properties of Zn1−x Al x O:NiO transparent metal oxide composite thin films prepared by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The films of Zn1−x Al x O:NiO (AZO; Al/Zn = 1.5 at.%, x = 0.5–2.0) were synthesized on glass substrates by sol–gel method. The morphological properties of the films were studied by atomic force microscopy. The surface morphology of the films is found to depend on the concentration of NiO. The optical band gap, Urbach energy and optical constants such as refractive index, extinction coefficient and real and imaginary parts of the dielectric constant of the films were determined. The refractive index dispersion of the films obeys the single-oscillator model, and the single-oscillator parameters were determined. The optical band gap of ZnO film was found to be 3.76 eV, and the optical band gap of the films increases with NiO doping. The obtained results suggest that Zn1−x Al x O:NiO films can be used as optical material in optical communication applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang W, Zhang G, Yu L, Bai X, Zhang Z, Zhao X (2007) Phys E 36:86–91

    Article  Google Scholar 

  2. Shishiyanu ST, Shishiyanu TS, Lupan OI (2005) Sens Actuators B Chem 107:379

    Article  Google Scholar 

  3. Rodriguez JA, Jirsak T, Dvorak J, Sambasivan S, Fischer DJ (2000) J Phys Chem B 104:319

    Article  Google Scholar 

  4. Liu JP, Qu SC, Zeng XB, Xu Y, Gou XF, Wang ZJ, Zhou HY, Wang ZG (2007) Appl Surf Sci 253:7506

    Article  Google Scholar 

  5. Banger KK, Yamashita Y, Mori K, Peterson RL, Leedham T, Rickard J, Sirringhaus H (2011) Nat Mater 10:45

    Article  Google Scholar 

  6. Gardeniers JGE, Rittersma ZM, Burger GJ (1998) J Appl Phys 83:7844

    Article  Google Scholar 

  7. Hung NT, Quang ND, Bernik S (2001) J Mater Res 16:2817

    Article  Google Scholar 

  8. Shin W-C, Wu M-S (1994) J Cryst Growth 137:319

    Article  Google Scholar 

  9. Wang T, Liu Y, Fang Q, Wu M, Sun X, Lu F (2011) Appl Surf Sci 257:2341–2345

    Article  Google Scholar 

  10. Trolio AD, Bauer EM, Scavia G, Veroli C (2009) J Appl Phys 105:113109

    Article  Google Scholar 

  11. Kim KH, Park KC, Ma DY (1997) J Appl Phys 81:7764–7772

    Article  Google Scholar 

  12. Hwang DK, Kim HS, Lim JH, Oh JY, Yang JH, Park SJ, Kim KK, Look DC, Park YS (2005) Appl Phys Lett 86:151917

    Article  Google Scholar 

  13. Kim KK, Kim HS, Hwang DK, Lim JH, Park SJ (2003) Appl Phys Lett 83:63

    Article  Google Scholar 

  14. Jeong TS, Han MS, Youn CJ, Park YS (2004) J Appl Phys 96:175

    Article  Google Scholar 

  15. Dutta M, Ghosh T, Basak D (2009) J Electron Mater 38:11

    Google Scholar 

  16. Hui KN, Hui KS, Li L, Cho YR, Singh J (2013) Mater Res Bull 48:96–100

    Article  Google Scholar 

  17. Nunes P, Fortunato E, Tonello P, Fernandes FB, Vilarinho P, Martins R (2002) Vacuum 64:281–285

    Article  Google Scholar 

  18. Farag AAM, Cavas M, Yakuphanoglu F, Amanullah FM (2011) J Alloys Compd 509:7900–7908

    Article  Google Scholar 

  19. Wang G, Chu S, Zhan N, Lin Y, Chernyak L, Liu J (2011) Appl Phys Lett 98:041107

    Article  Google Scholar 

  20. Vigil O, Cruz F, Morales-Acevedo A, Contreras-Puente G, Vaillant L, Santana G (2001) Mater Chem Phys 68:249

    Article  Google Scholar 

  21. Bian JM, Li XM, Gao XD, Yu WD, Chen LD (2004) Appl Phys Lett 84:541

    Article  Google Scholar 

  22. Pandey R, Yuldashev S, Nguyen HD, Jeon HC, Kang TW (2012) Curr Appl Phys 12:S56–S58

    Article  Google Scholar 

  23. Bacaksiz E, Aksu S, Yılmaz S, Parlak M, Altunbaş M (2010) Thin Solid Films 518:4076–4080

    Article  Google Scholar 

  24. Look DC, Renlund GM, Burgener RH, Sizelove JR (2004) Appl Phys Lett 85:5269

    Article  Google Scholar 

  25. Kim D-K, Kim H-B (2015) Superlattices Microstruct 85:50–58

    Article  Google Scholar 

  26. Tan ST, Sun XW, Yu ZG, Wu P, Lo GQ, Kwong DL (2007) Appl Phys Lett 91:72101

    Article  Google Scholar 

  27. Gürbüz O, Güner S (2015) Ceram Int 41:3968–3974

    Article  Google Scholar 

  28. Vaithianathan V, Lee BT, Kim SS (2005) J Appl Phys 98:043519

    Article  Google Scholar 

  29. Najafi M, Haratizadeh H (2015) Solid State Sci 41:48–51

    Article  Google Scholar 

  30. Devi V, Kumar M, Shukla DK, Choudhary RJ, Phase DM, Kumar R, Joshi BC (2015) Superlattices Microstruct 83:431–438

    Article  Google Scholar 

  31. Lee J, Park YS (2015) Thin Solid Films 587:94–99

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by FIRAT University Scientific Research Projects Unit under Project No: FF.12.30. The authors gratefully acknowledge and thank the Deanship of Scientific Research, King Abdulaziz University (KAU), Jeddah, Saudi Arabia, for the research group “Advances in composites, Synthesis and applications.” This work is as a result of international collaboration of the group with Professor F. Yakuphanoglu. This study was supported by King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yakuphanoglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, B., El-Nasser, H.M., Dere, A. et al. Optical properties of Zn1−x Al x O:NiO transparent metal oxide composite thin films prepared by sol–gel method. J Sol-Gel Sci Technol 76, 378–385 (2015). https://doi.org/10.1007/s10971-015-3786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3786-1

Keywords

Navigation