Skip to main content
Log in

Synthesis and characterization of new silica–titania mixed oxide in the presence of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide by sol–gel technique

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Silica–titania mixed oxide were prepared by sol–gel method from tetraethylorthosilicate and titanium (IV) isopropoxide as precursors in the presence of room temperature ionic liquid (RTIL), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [C4MIm][NTf2]. The effects of [C4MIm][NTf2] on the structural and textural characteristics of silica–titania matrix are investigated in this paper. The materials obtained were well characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis X-ray powder diffraction (XRPD), field emission scanning electron microscope (FESEM) and N2 adsorption–desorption analysis. It is believed that the [C4MIm][NTf2] plays an important role as a template and the high surface area of the samples is thought to mainly attribute to the formation of microporous in the reaction. The synthesized materials showed the presence of C–N groups in the FTIR spectrum which indicates the presence of RTIL in the silica–titania matrix. XRPD, FESEM and N2 adsorption–desorption analysis results indicated that the composite materials possessed good microporous character. The subsequent material displayed average pore diameter of 1.70–2.12 nm, pore volume of 0.08–0.19 cm3/g and BET surface area of 191–386 m2/g. Increasing the content of RTIL resulted in an increase of the average pore diameter of the silica–titania gel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pabon E, Retuert J, Quijada R, Zarate A (2004) Microporous Microporous Mater 64:195

    Article  Google Scholar 

  2. Elia A, Martin Aispuro P, Quaranta N, Martin-Martinez JM, Vazquez P (2001) Macromol Symp 301:136

    Article  Google Scholar 

  3. Murashkevich AN, Lavitskaya AS, Barannikova TI, Zharskii IM (2008) J Appl Spectrosc 75:730

    Article  Google Scholar 

  4. Shishmakov AB, Mikushina YV, Koryakova OV, Valova MS, Petrov LA, Melkozerov SA (2012) Russ J Inorg Chem 57:787

    Article  Google Scholar 

  5. Vives S, Meunier C (2008) Ceram Int 34:37

    Article  Google Scholar 

  6. Mikushina YV, Shishmakov AB, Matskevich VV, Zhuravlev NA, Koryakova OV, Kharchuk VG, Petrov LA (2008) Russ J Inorg Chem 53:1557

    Article  Google Scholar 

  7. Ren J, Li Z, Liu S, Xing Y, Xie K (2008) Catal Lett 124:185

    Article  Google Scholar 

  8. Schraml-Marth M, Walter KL, Wokaun A, Handy BE, Baiker A, Non-Crys J (1992) Solids 143:93

    Google Scholar 

  9. Lakshmi JL, Ihasz NJ, Miller JM, Molec J (2001) Catal A Chem 165:199

    Article  Google Scholar 

  10. Hou YD, Wang XC, Wu L, Chen XF, Ding ZX, Wang XX, Fu XZ (2008) Chemosphere 72:414

    Article  Google Scholar 

  11. Husing N, Launay B, Doshi D, Kickelbick G (2002) Chem Mater 14:2431

    Article  Google Scholar 

  12. Jiang HJ, Yuan XC, Zhou Y, Chan YC, Lam YL (2000) Opt Commun 185:19

    Article  Google Scholar 

  13. Cason M, Bersani D, Antonioli G, Lottici PP, Montenero A, Cavalli M (1999) Opt Mater 12:447

    Article  Google Scholar 

  14. Vioux A, Viau L, Volland S, Bideau JL (2010) CR Chim 13:242

  15. Plechkova NV, Seddon KR (2008) Chem Soc Rev 37:123–150

    Article  Google Scholar 

  16. Dupont J, Souza RF, Suarez PAZ (2002) Chem Rev 102:3667–3692

    Article  Google Scholar 

  17. Seddon KR (2003) Nat Mater 2:363

    Article  Google Scholar 

  18. Welton T (1999) Chem Rev 99:2071

    Article  Google Scholar 

  19. Paramasivam I, Macak JM, Selvam T, Schmuki P (2008) Electrochim Acta 54:643

    Article  Google Scholar 

  20. Yamanaka N, Kawano R, Kubo W, Masaki N, Kitamura T, Wada Y, Watanabe M, Yanagida S (2007) J Phys Chem B 111:4763

    Article  Google Scholar 

  21. Galinski M, Lewandowski A, Stepniak I (2006) Electrochim Acta 51:5567

    Article  Google Scholar 

  22. Earle MJ, McCormac PB, Seddon KR (1999) Green Chem 1:23

    Article  Google Scholar 

  23. Zhang J, Ma Y, Shi F, Liu L, Deng Y (2009) Microporous Microporous Mater 119:97

    Article  Google Scholar 

  24. Neouze MA, Bideau JL, Gaveau P, Bellayer S, Vioux A (2006) Chem Mater 18:3931

    Article  Google Scholar 

  25. Zhou Y, Schattka JH, Antonietti M (2004) Nano Lett 4:477

    Article  Google Scholar 

  26. Shi F, Deng Y (2005) Spectrochim Acta Part A 62:239

    Article  Google Scholar 

  27. Klingshirn MA, Spear SK, Holbrey JD, Roger RD (2005) J Mater Chem 15:5174

    Article  Google Scholar 

  28. Zhang J, Zhang Q, Li X, Liu S, Ma Y, Shi F (2010) Phys Chem Chem Phys 12:1971

    Article  Google Scholar 

  29. Yuan CY, Dai S, Wei Y, Cheng-Yang YW (2002) ACS Symp Ser 818:106

    Article  Google Scholar 

  30. Yoo KS, Lee TG, Kim J (2005) Microporous Microporous Mater 84:211

    Article  Google Scholar 

  31. Kaper H, Sallard S, Djerdj I, Antonietti M, Smarsly BM (2010) Chem Mater 22:3502

    Article  Google Scholar 

  32. Liu Y, Li J, Wang M, Li Z, Liu H, He P, Yang X, Li J (2005) Cryst Growth Des 5:1643

    Article  Google Scholar 

  33. Nakashima T, Kimizuka N (2003) J Am Chem Soc 125:6386

    Article  Google Scholar 

  34. Farag HK, Zoubi MA, Endres F (2009) J Mater Sci 44:122

    Article  Google Scholar 

  35. Chen SY, Han CC, Tsai CH, Huang J, Chen-Yang YW (2007) J Power Sources 171:363

    Article  Google Scholar 

  36. Hu SF, Wang HY, Cao JM, Liu JS, Fang BQ, Zheng MB, Ji GB, Zhang F, Yang ZJ (2008) Mater Lett 62:2954

    Article  Google Scholar 

  37. Choi H, Kim YJ, Varma RS, Dionysiou DD (2006) Chem Mater 18:5377

    Article  Google Scholar 

  38. Choi EH, Hong SI, Moon DJ (2008) Catal Lett 123:84

    Article  Google Scholar 

  39. Kaper H, Willimger MG, Djerdj I, Gross S, Antonietti M, Smarsly BM (2008) J Mater Chem 18:5761

    Article  Google Scholar 

  40. Lozinskaya EI, Shaplov AS, Vygodskii YS (2004) Eur Polym J 40:2065

    Article  Google Scholar 

  41. Zhang Y, Li G, Wu Y, Luo Y, Zhang L (2005) J Phys Chem B 109:5478

    Article  Google Scholar 

  42. Balachandran K, Venckatesh R, Rajeshwari S (2010) Int J Eng Sci Tech 2:3695

    Google Scholar 

  43. Gunji T, Yokogawa M, Hongo M, Abe Y (2005) J Polym Sci Part A Polym Chem 43:763

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by University of Malaya Centre for Ionic Liquids, Postgraduate Research Fund Grant Scheme (PV124-2012A) and High Impact Research Grant HIR MOE (Faculty) F0004-21001 from the Ministry of Higher Education Malaysia. The researcher named Tilagam Marimuthu would like to thank Ministry of Higher Education Malaysia for its financial support through my PhD scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yatimah Alias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marimuthu, T., Mohamad, S. & Alias, Y. Synthesis and characterization of new silica–titania mixed oxide in the presence of 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide by sol–gel technique. J Sol-Gel Sci Technol 70, 104–110 (2014). https://doi.org/10.1007/s10971-014-3279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3279-7

Keywords

Navigation