Skip to main content
Log in

PVC-silica hybrids: effect of sol–gel conditions on the morphology of silica particles and thermal mechanical properties of the hybrids

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Hybrid materials from poly(vinyl chloride) (PVC) and silica have been prepared using different conditions by the sol–gel technique. In situ generation of silica network in the PVC matrix was carried out by hydrolysis/condensation of tetraethoxysilane (TEOS) in the matrix. Morphology of the silica particles produced in hybrid films was studied by scattering electron microscopy. The shape of silica particle produced in the matrix was modified by carrying out the sol–gel process under steam on the hybrid films using TEOS. The films were subjected to strain conditions during this process, which produced lamellar shaped particles in the matrix. It was possible to produce platelet type of structure with different aspect ratio by changing the composition and the stress conditions on the films during the steaming process. Addition of a very small amount of γ-glycidoxypropyltrimethoxysilane as compatibilizer drastically reduced the silica particles size in the matrix to nano-level. Thermal–mechanical properties of some of these hybrids were studied and related to the composition, structure and inter-phase interaction between the silica and the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Braun D (2004) J Polym Sci Part A Polym Chem 42:578–586

    Article  CAS  Google Scholar 

  2. Wilkes Charles E, Summers J, Anthony C, Berard Mark T (2005) Handbook. Hanser Verlag, Munich

    Google Scholar 

  3. Titow WV (1986) PVC techanology. Elsevier Applied Science Publisher, London

    Google Scholar 

  4. Narkis M, Shach-Caplan M, Haba Y, Silverstein S (2005) J Vinyl Addit Tech 10:109–120

    Article  Google Scholar 

  5. Ateia E (2005) J Appl Polym Sci 95(4):916–921

    Article  CAS  Google Scholar 

  6. Pielichowski K (1999) Eur Polym J 35:27–34

    Article  CAS  Google Scholar 

  7. Park IH, Jang J, Chujo Y (1995) Die Ange Makromol Chem 226:1–12

    Article  CAS  Google Scholar 

  8. Xu WB, Zhou ZF, Ge ML, Pan WP (2004) Therm Anal Calorim 78:91–99

    Article  CAS  Google Scholar 

  9. Gong F, Feng M, Hao C, Shang S, Yang M (2004) Polm Degrad Stab 84:289–294

    Article  CAS  Google Scholar 

  10. Ogoshi T, Chujo Y (2003) Bull Chem Soc Japan 76:1865–1871

    Article  CAS  Google Scholar 

  11. Cao YM, Sun J, Yu DH (2002) J Appl Polym Sci 83:70–77

    Article  CAS  Google Scholar 

  12. Xie XL, Liu QX, Li RKY, Zhou XP, Zhang QX, Yu ZZ (2004) Polymer 45:6665–6673

    Article  CAS  Google Scholar 

  13. Hsiue GH, Kuo WH, Huang YP, Jeng RG (2000) Polymer 41:2813–2825

    Article  CAS  Google Scholar 

  14. Bialk M, Prucker O, Ruhe J (2002) Colloids Surf A Phsicochem Eng Asp 198–2:543–549

    Article  Google Scholar 

  15. Yoshinaga K, Shimada J, Nishida H, Komatsu M (1999) J Colloid Interf Sci 214(2):180–188

    Article  CAS  Google Scholar 

  16. Werne TV, Patten TE (2001) J Am Chem Soc 123:7497–7505

    Article  Google Scholar 

  17. Brinker CJ, Scherer GW (1990) Sol gel science’ the physics and chemistry of sol gel processing. Academic Press, Boston

    Google Scholar 

  18. Al-Sagheer F, Ahmad Z, Muslim S (2008) Int J Polym Mater 57:1–16

    Article  CAS  Google Scholar 

  19. Pukanszky B (1990) Composites 21:255–262

    Article  CAS  Google Scholar 

  20. Zhu A, Cai A, Zhou W, Shi Z (2008) Appl Surf Sci 254:3745–3752

    Article  CAS  Google Scholar 

  21. Zhu A, Cai A, Zhang J, Wang J (2008) J Appl Polym Sci 108:2189–2196

    Article  CAS  Google Scholar 

  22. Wu D, Wang X, Song Y, Jin R (2004) J Appl Polym Sci 92:2714–2723

    Article  CAS  Google Scholar 

  23. Kelnar I, Schatz M (1993) J Appl Polym Sci 48:669–676

    Article  CAS  Google Scholar 

  24. Kelnar I, Schatz M (1993) J Appl Polym Sci 48:657–668

    Article  CAS  Google Scholar 

  25. Jorn S, Bard S, Steinar P (1998) J Appl Polym Sci 67:849–853

    Article  Google Scholar 

  26. Gilbert M, Haghighat S, Chua SK, Ng SY (2006) Macromol Symp 233(1):198–202

    Article  Google Scholar 

  27. Gilbert M, Rodriguez-Fernandez OS (1997) J Appl Polym Sci 66:2111–2119

    Article  Google Scholar 

  28. Khan MK, Sarwar MI, Rafiq S, Ahmad Z (1998) Polym Bull 40:583–590

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the financial support provided by the Kuwait University under the project SC03/05. They would also like to appreciate the technical support from the E. M unit and the general facilities projects GS01/01, GS01/05 under the SAF program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fakhreia A. Al-Sagheer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Sagheer, F.A., Ahmad, Z. PVC-silica hybrids: effect of sol–gel conditions on the morphology of silica particles and thermal mechanical properties of the hybrids. J Sol-Gel Sci Technol 61, 229–235 (2012). https://doi.org/10.1007/s10971-011-2618-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2618-1

Keywords

Navigation