Skip to main content
Log in

Mechanochemical reaction of TiO2 with β-alanine for the preparation of visible light active nitrogen doped titania: adsorption and kinetic studies

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nitrogen doped TiO2 (TiO2−xNx) with a homogenous anatase phase was synthesized, using β-alanine as a nitrogen precursor and ethanol as a oxygen depriving agent in the concentration range of 0.05, 0.10, 0.15 and 0.2 at% and were characterized by Powder X-ray Diffraction (PXRD), X-ray Photoelectron Spectra (XPS), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FT-IR) and UV–visible Diffused Reflectance Spectroscopic (DRS) techniques. Ethanol deprives the surface oxygen, thereby generating oxygen defects whose concentration was evaluated by FTIR, Photoluminescence (PL) and Electron Spin Resonance (ESR) studies. FTIR analysis reveal that concentration of oxygen vacancies/defects (Vo) decreases as the nitrogen concentration increases leading to the reduction in the Ti–O bond length. This results in a shift of the IR absorption peak towards a low wave number as predicted by simple physical harmonic oscillator model. The Ti 2p3/2 XPS spectra of TiO2−xNx shifts to lower binding energies due to the increase in the electron densities around the Ti atoms indicating the formation of Ti3+ in the doped samples. N2 adsorption–desorption isotherms measurements show a slight increase in the Brunner–Emmet–Teller (BET) surface area, pore diameter, mesopore volume, while the crystallite size and the morphology were also effected by the nitrogen doping. The equilibrium adsorption of Toluene molecules on the photocatalyst surface follows Langmuir theory and the rate controlling step could be the surface reaction of the adsorbed Toluene molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lin L, Zheng RY, Xie JL, Zhu YX, Xie YC (2007) Appl Catal B Environ 76:196–202

    Article  CAS  Google Scholar 

  2. Yu J, Zhang L, Cheng B, Su Y (2007) J Phys Chem C 111:10582–10589

    Article  CAS  Google Scholar 

  3. Yu J, Liu W, Yu H (2008) Cryst Growth Des 8:930–934

    Article  CAS  Google Scholar 

  4. Yu JG, Su YR, Cheng B (2007) Adv Funct Mater 17:1984–1990

    Article  CAS  Google Scholar 

  5. Yu J, Wang W, Cheng B, Su B-L (2009) J Phys Chem C 113:6743–6750

    Article  CAS  Google Scholar 

  6. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271

    Article  CAS  Google Scholar 

  7. Kobayakawa K, Murakami Y, Sato Y (2005) J Photochem Photobiol A Chem 170:177–183

    Article  CAS  Google Scholar 

  8. Enache CS, Shoonman J, Krol RVD (2004) J Electroceram 13:177–179

    Article  CAS  Google Scholar 

  9. Lee JY, Park J, Cho JH (2005) Appl Phys Lett 87:011904/1–011904/3

    Google Scholar 

  10. Yu JC, Yu J, Ho W, Jiang Z, Zhang L (2002) Chem Mater 14:3808–3816

    Article  CAS  Google Scholar 

  11. Li D, Haneda H, Hishita S, Ohashi N, Labhsetwar NK (2005) J Fluor Chem 126:69–77

    Article  CAS  Google Scholar 

  12. Lin L, Lin W, Zhu Y, Zhao B, Xie Y (2005) Chem Lett 34:284–285

    Article  CAS  Google Scholar 

  13. Lindgren T, Mwabora JM, Avendano E, Jonsson J, Hoel A, Granqvist C-G, Lindquist S-E (2003) J Phys Chem B 107:5709–5716

    Article  CAS  Google Scholar 

  14. Diwald O, Thompson TL, Zubkov T, Goralski EG, Walck SD, Yates JT Jr (2004) J Phys Chem B 108:6004–6008

    Article  CAS  Google Scholar 

  15. Yang KS, Dai Y, Huang BB, Han SH (2006) J Phys Chem B 110:24011–24014

    Article  CAS  Google Scholar 

  16. Valentin CD, Pacchioni G, Selloni A (2004) Phys Rev B 70:085116/1–085116/4

    Google Scholar 

  17. Yang K, Dai Y, Huang B (2007) J Phys Chem C 111:12086–12090

    Article  CAS  Google Scholar 

  18. Livraghi S, Paganini MC, Giamello E, Selloni A, Di Valentin C, Pacchioni G (2006) J Am Chem Soc 128:15666–15671

    Article  CAS  Google Scholar 

  19. Qiu X, Zhao Y, Burda C (2007) Adv Mater 19:3995–3999

    Article  CAS  Google Scholar 

  20. Li QK, Wang B, Zheng Y, Wang Q, Wang H (2007) Phys Stat Sol 1:217–219

    CAS  Google Scholar 

  21. Miyauchi M, Ikezawa A, Tobimatsu H, Irie H, Hashimoto K (2004) Phys Chem Chem Phys 6:865–870

    Article  CAS  Google Scholar 

  22. Mwabora JM, Lindgren T, Avendano E, Jaramillo TF, Lu J, Lindquist SE, Granqvist CG (2004) J Phys Chem B 108:20193–20198

    Article  CAS  Google Scholar 

  23. Kitano M, Funatsu K, Matsuoka M, Ueshima M, Anpo M (2006) J Phys Chem B 110:25266–25272

    Article  CAS  Google Scholar 

  24. Diwald O, Thompson TL, Goralski EG, Walck SD, Yates JT (2004) J Phys Chem B 108:52–57

    Article  CAS  Google Scholar 

  25. Batzill M, Morales EH, Diebold U (2006) Phys Rev Lett 96:026103

    Article  Google Scholar 

  26. Sato S (1986) Chem Phys Lett 123:126–128

    Article  CAS  Google Scholar 

  27. Zou Z, Ye J, Sayama K, Arakawa H (2001) Nature 414:625–627

    Article  CAS  Google Scholar 

  28. Gole JL, Stout JD, Burda C, Lou Y, Chen X (2004) J Phys Chem B 108:1230–1240

    Article  CAS  Google Scholar 

  29. Burda C, Lou Y, Chen X, Samia ACS, Stout J, Gole JL (2003) Nano Lett 3:1049–1051

    Article  CAS  Google Scholar 

  30. Sakthivel S, Janczarek M, Kisch H (2004) J Phys Chem B 108:19384–19387

    Article  CAS  Google Scholar 

  31. Livraghi S, Votta A, Paganini MC, Giamello E (2005) Chem Commun 4:498–500

    Article  Google Scholar 

  32. Lin Z, Orlov A, Lambert RM, Payne MC (2005) J Phys Chem B 109:20948–20952

    Article  CAS  Google Scholar 

  33. Sato S, Nakamura R, Abe S (2005) Appl Catal A 284:131–137

    Article  CAS  Google Scholar 

  34. Nosaka Y, Matsushita M, Nisino J, Nosaka AY (2005) Sci Technol Adv Mater 6:143–148

    Article  CAS  Google Scholar 

  35. Sathish M, Viswanathan B, Viswanath RP, Gopinath CS (2005) Chem Mater 17:6349–6353

    Article  CAS  Google Scholar 

  36. Irie H, Watanabe Y, Hashimoto K (2003) J Phys Chem B 107:5483–5486

    Article  CAS  Google Scholar 

  37. Prokes SM, Gole JL, Chen X, Burda C, Carlos WE (2005) Adv Funct Mater 15:161–167

    Article  CAS  Google Scholar 

  38. Gao B, Ma Y, Cao Y, Yang W, Yao J (2006) J Phys Chem B 110:14391–14397

    Article  CAS  Google Scholar 

  39. Rodriguez JA, Jirsak T, Dvorak J, Sambasivan S, Fischer D (2000) J Phys Chem B 104:319–328

    Article  CAS  Google Scholar 

  40. Sakatani Y, Nunoshige J, Ando H, Okusako K, Koike H, Takata T, Kondo JN, Hara M, Domen K (2003) Chem Lett 32:1156–1157

    Article  CAS  Google Scholar 

  41. Mrowetz M, Balcerski W, Colussi AJ, Hoffmann MR (2004) J Phys Chem B 108:17269–17273

    Article  CAS  Google Scholar 

  42. Balcerski W, Ryu SY, Hoffmann MR (2007) J Phys Chem C 111:15357–15362

    Article  CAS  Google Scholar 

  43. Nakamura R, Tanaka T, Nakato Y (2004) J Phys Chem B 108:10617–10620

    Article  CAS  Google Scholar 

  44. Kisch H, Sakthivel S, Janczarek M, Mitoraj D (2007) J Phys Chem C 111:11445–11449

    Article  CAS  Google Scholar 

  45. Fu H, Zhang L, Zhang S, Zhu Y, Zhao J (2006) J Phys Chem B 110:3061–3065

    Article  CAS  Google Scholar 

  46. Cong Y, Zhang J, Chen F, Anpo M (2007) J Phys Chem C 111:6976–6982

    Article  CAS  Google Scholar 

  47. Peng F, Cai L, Yu H, Wang H, Yang J (2008) J Solid State Chem 181:130–136

    Article  CAS  Google Scholar 

  48. Venkatachalam N, Vinu A, Anandan S, Arabindoo B, Murugesan V (2006) J Nanosci Nanotechnol 6:2499–2507

    Article  CAS  Google Scholar 

  49. Devi LG, Krishnaiah GM (1999) J Photochem Photobiol A Chem 121:141–145

    Article  Google Scholar 

  50. Chen S, Chen L, Gao S, Cao G (2005) Chem Phys Lett 413:404–409

    Article  Google Scholar 

  51. Valentin CD, Pacchioni G, Selloni A, Livraghi S, Giamello E (2005) J Phys Chem B 109:11414–11419

    Article  Google Scholar 

  52. Li D, Haneda H, Hishita S, Ohashi N (2005) Chem Mater 17:2596–2602

    Article  CAS  Google Scholar 

  53. Yang X, Cao C, Erickson L, Hohn K, Maghirang R, Klabunde K (2009) Appl Cat B Environ 91:657–662

    Article  CAS  Google Scholar 

  54. Wang Y, Huang Y, Ho W, Zhang L, Zou Z, Lee S (2009) J Hazard Mater 169:77–87

    Article  CAS  Google Scholar 

  55. Jagadale TC, Takale SP, Sonawane RS, Joshi HM, Patil SI, Kale BB, Ogale SB (2008) J Phys Chem C 112:14595–14602

    Article  CAS  Google Scholar 

  56. Gomathi Devi L, Narasimha Murthy B (2008) Catal Lett 125:320–330

    Article  Google Scholar 

  57. Azaroff LV (1977) Introduction to solids, TMH edn. McGraw-Hill Inc, New York

  58. Prasad K, Bally Philippe AR, Schmid E, Levy F, Benoit J, Barthou C, Benalloul P (1997) J Appl Phys 36:5696–5702

    Article  CAS  Google Scholar 

  59. Kamal MSK, Mohamed IZ (1997) Powder Technol 92:233–239

    Article  Google Scholar 

  60. Wangner CD (1972) Anal Chem 44:1050–1053

    Article  Google Scholar 

  61. Chen X, Burda C (2004) J Phys Chem B 108:15446–15449

    Article  CAS  Google Scholar 

  62. Yu JG, Wang GH, Cheng B, Zhou MH (2007) Appl Catal B Environ 69:171–180

    Article  CAS  Google Scholar 

  63. Yu JG, Yu HG, Cheng B, Zhou MH, Zhao XJ (2006) J Mol Catal A Chem 253:112–118

    Article  CAS  Google Scholar 

  64. Li Y, Hwang D, Lee NH, Kim S-J (2005) Chem Phys Lett 25:404–406

    Google Scholar 

  65. Miao L, Tanemura S, Watanabe H, Mori Y, Kaneko K, Toh S (2004) J Cryst Growth 260:118–124

    Article  CAS  Google Scholar 

  66. Joshi MM, Labhsetwar NK, Mangrulkar PA, Tijare SN, Kamble SP, Rayalu SS (2009) Appl Catal A Gen 357:26–33

    Article  CAS  Google Scholar 

  67. Evgenidou E, Konstantinou I, Fytianos K, Poulios I (2007) Water Res 41:2015–2027

    Article  CAS  Google Scholar 

  68. Wang JW, Zhu W, Zhang YQ, Liu SX (2007) J Phys Chem C 111:1010–1014

    Article  CAS  Google Scholar 

  69. Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S (2003) Appl Catal B Environ 42:403–414

    Article  CAS  Google Scholar 

  70. Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J, Zhu Y (2007) Inorg Chem 46:6672–6682

    Google Scholar 

  71. Wang J, Liu P, Fu X, Li Z, Han W, Wang X (2009) Langmuir 25:1218–1223

    Article  CAS  Google Scholar 

  72. Li FB, Li XZ (2002) Chemosphere 48:1103–1111

    Article  CAS  Google Scholar 

  73. Zhang J, Hu Y, Matsuoka M, Yamashita H, Minagawa M, Hidaka H, Anpo M (2001) J Phys Chem B 105:8395–8398

    Article  CAS  Google Scholar 

  74. Tang H, Prasad K, Sanjines R, Schmidd PE, Levy F (1994) J Appl Phys 75:2042–2047

    Article  CAS  Google Scholar 

  75. Serwicka E (1985) Coll Surf 13:287–290

    Article  CAS  Google Scholar 

  76. Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K (2000) J Mol Catal A Chem 161:205–212

    Article  CAS  Google Scholar 

  77. Gomathi Devi L, Eraiah Rajashekhar K (2011) J Mol Catal A Chem 334:65–76

    Article  Google Scholar 

  78. Attwood AL, Murphy DM, Edwards JL, Egerton TA, Harrison RW (2003) Res Chem Intermed 29:449–465

    Article  CAS  Google Scholar 

  79. Coronado JM, Maira AJ, Conesa JC, Yeung KL, Augugliaro V, Soria J (2001) Langmuir 17:5368–5374

    Article  CAS  Google Scholar 

  80. Kumar CP, Gopal NO, Wang TC, Wong M-S, Ke SC (2006) J Phys Chem B 110:5223–5229

    Article  CAS  Google Scholar 

  81. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC (2003) J Phys Chem B 107:4545–4549

    Article  CAS  Google Scholar 

  82. Minji J, Yu N, Kazuomi N, Kinuyo O, Shoji N, Toshihide H, Masahiro K, Tahei T, Junichi H (2008) Adsorption 14:257–263

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from University Grants Commission (UGC) and Department of Science and Technology (DST). K. Eraiah Rajashekhar acknowledge the UGC for awarding RFSMS Fellowship. We immensely thank Prof. Vishnu Kamath (Department of Chemistry) and Prof. S. Ranganath (University Visveshvarayya College of Engineering) Bangalore University for recording the PXRD pattern and SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Gomathi Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomathi Devi, L., Eraiah Rajashekhar, K. Mechanochemical reaction of TiO2 with β-alanine for the preparation of visible light active nitrogen doped titania: adsorption and kinetic studies. J Sol-Gel Sci Technol 60, 144–158 (2011). https://doi.org/10.1007/s10971-011-2570-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2570-0

Keywords

Navigation