Skip to main content
Log in

Physical-chemistry of sodium silicate gelation in an alkaline medium

  • Orginal paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The behavior of sodium silicate solutions in an alkaline medium has been studied in the 11.56–9 pH range by adding different amount of hydrochloric acid into a concentrated commercial solution ([Si] = 7 mol/L, Si/Na = 1.71, pH = 11.56). The formed products and their evolution during long ripening (up to 150 days) have been characterized by cryo-SEM, elementary analysis (ICP-AES), X-ray diffraction and surface area and relative density measurements. In the studied narrow ranges of pH (11.56–9) and silicon concentration (7–0.2 mol/L) four different situations have been observed: (i) a stable and clear solution, (ii) a reversible and transparent physical gel; (iii) a soluble white gel characterized by a significant contraction during ripening and (iv) an irreversible gel which presents a slow syneresis leading to a consolidate solid. The characterizations of the different solids, liquids and gels have shown that the observed behaviors were the results of the formation of nanometric soluble NaSi1.87O4.24 particles and/or insoluble silica-like (NaSi12.66O25.82) grains and of the contribution of a dissolution/precipitation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. WH Engelleitner (1990) Glossary of agglomeration terms, powder and bulk engineering. AME Pittsburg, New York

  2. Viallis-Terrisse H (2000) Interaction des silicates de calcium hydratés, principaux constituants du ciment, avec les chlorures d’alcalins. Analogie avec les argiles. PhD thesis, Université de Bourgogne, France

  3. Davidovits J (1991) J Therm Anal 37:1633–1656

    Article  CAS  Google Scholar 

  4. Phair JW, Van Deventer JSJ (2002) Ind Eng Chem Res 41:4242–4251

    Article  CAS  Google Scholar 

  5. Phair JW, Van Deventer JSJ, Smith JD (2000) Ind Eng Chem Res 39:2925–2934

    Article  CAS  Google Scholar 

  6. Tognonvi MT, Massiot D, Lecomte A, Rossignol S, Bonnet J-P (2010) J Colloid Interface Sci 352:309–315

    Article  CAS  Google Scholar 

  7. Merrill RC, Spencer RW (1950) J Phys Chem 54:806–812

    Article  CAS  Google Scholar 

  8. Iler RK (1979) The chemistry of silica. John Wiley and Sons, New York

    Google Scholar 

  9. Fernández-Barbero A, Suárez IJ, Sierra-Martín B, Fernández-Nieves A, de Las Nieves FJ, Marquez M, Rubio-Retama J, López-Cabarcos E (2009) Adv Colloid Interface Sci 147–148:88–108

    Article  Google Scholar 

  10. Tognonvi MT (2009) Physico-chimie de la gélification du silicate de sodium en milieu basique. PhD thesis, Université de Limoges, France

  11. Brinker CJ, Scherer GW (1985) J Non Cryst Solids 70:301–322

    Article  CAS  Google Scholar 

  12. Tanaka T (1981) Sci Am 244:124–138

    Article  CAS  Google Scholar 

  13. Sosman RB (1965) The phase of silica. Rutgers University Press, New Brunswick

    Google Scholar 

  14. Randell MG (1985) Liquid phase sintering. Plenum Press, New York

    Google Scholar 

  15. Wijnen BPWJG, Beelen TPM, Rummens KPJ, Saeijs HCPL, Van Santen RA (1991) J Appl Cryst 24:759–764

    Article  CAS  Google Scholar 

  16. Christy AA (2008) Colloids Surf A Physicochem Eng Asp 322:248–252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Rossignol.

Appendix

Appendix

  1. 1)

    Volume of the solid skeleton VS

$$ {\text{V}}_{\text{S}} = {\frac{{{\text{M}}_{\text{S}} }}{\rho }} $$
(3)
$$ {\text{V}}_{\text{s}} = {\frac{{{\text{M}}_{{{\text{SiO}}_{ 2} }} \times \left[ {{\text{V}}_{\text{T}} \times \left( {\left[ {{\text{Si}}^{ \circ } } \right] - \left[ {{\text{Si}}_{\text{Sur}} } \right]} \right) + {\text{V}}_{\text{s}} \times \left[ {{\text{Si}}_{\text{Sur}} } \right]} \right] + {\frac{{{\text{M}}_{{{\text{Na}}_{ 2} {\text{O}}}} }}{ 2}} \times \left[ {{\text{V}}_{\text{T}} \times \left( {\left[ {{\text{Na}}^{ \circ } } \right] - \left[ {{\text{Na}}_{\text{Sur}} } \right]} \right) + {\text{V}}_{\text{s}} \times \left[ {{\text{Na}}_{\text{Sur}} } \right]} \right]}}{2.2}} $$
(4)

where MS is the mass of the solid skeleton. 2.2 corresponds to an estimate solid density (g/cm3). [Na°] and [Si°] are respectively the sodium and silicon initial concentrations in the solution before gelation. \( {\text{M}}_{{{\text{SiO}}_{2} }} \) = 60 g is the mass of SiO2 per mol of silicon and \( {\frac{{{\text{M}}_{{{\text{Na}}_{ 2} {\text{O}}}} }}{2}} \) = 31 g the mass of Na2O = 31 g per mol of sodium. Eq. 3 becomes:

$$ {\text{V}}_{\text{s}} = {\frac{{{\text{V}}_{\text{T}} \left[ { 2 7 , 2 7\left( {\left[ {{\text{Si}}_{ 0} } \right] - \left[ {{\text{Si}}_{\text{Sur}} } \right]} \right){ + 14,09}\left( {\left[ {{\text{Na}}_{ 0} } \right] - \left[ {{\text{Na}}_{\text{Sur}} } \right]} \right)} \right] \times 1 0^{ - 3} }}{{ 1- \left( { 2 7 , 2 7\left[ {{\text{S}}_{\text{Sur}} } \right]{ + 14,09}\left[ {{\text{Na}}_{\text{Sur}} } \right]} \right) \times 1 0^{ - 3} }}} .$$
(5)
  1. 2)

    Si/Na atomic ratio (Si/Na)S

In the solid skeleton, we have

$$ {\text{n}}_{{{\text{Si}}_{\text{S}} }} = {\text{n}}_{{{\text{Si}}_{ 0} }} - \left( {{\text{n}}_{{{\text{Si}}_{\text{sur}} }} {\text{ + n}}_{{{\text{Si}}_{\text{L}} }} } \right) = {\text{V}}_{\text{T}} \left[ {{\text{Si}}_{ 0} } \right] - \left( {{\text{V}}_{\text{T}} - {\text{V}}_{\text{S}} } \right) \times \left[ {{\text{Si}}_{\text{sur}} } \right] $$
(6)

and

$$ {\text{n}}_{{{\text{Na}}_{\text{s}} }} = {\text{n}}_{{{\text{Na}}_{0} }} - \left( {{\text{n}}_{{{\text{Na}}_{\text{sur}} }} {\text{ + n}}_{{{\text{Na}}_{\text{L}} }} } \right) = {\text{V}}_{\text{T}} \left[ {{\text{Na}}_{ 0} } \right] - \left( {{\text{V}}_{\text{T}} - {\text{V}}_{\text{S}} } \right) \times \left[ {{\text{Na}}_{\text{sur}} } \right] $$
(7)

The combination of relations 6 and 7 leads to Eq. 8

$$ \left( {{\frac{\text{Si}}{\text{Na}}}} \right)_{\text{S}} = {\frac{{{\text{V}}_{\text{T}} \left[ {{\text{Si}}^{ \circ } } \right] - \left( {{\text{V}}_{\text{T}} - {\text{V}}_{\text{S}} } \right)\left[ {{\text{Si}}_{\text{sur}} } \right]}}{{{\text{V}}_{\text{T}} \left[ {{\text{Na}}^{ \circ } } \right] - \left( {{\text{V}}_{\text{T}} - {\text{V}}_{\text{S}} } \right)\left[ {{\text{Na}}_{\text{sur}} } \right]}}} $$
(8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tognonvi, M.T., Rossignol, S. & Bonnet, JP. Physical-chemistry of sodium silicate gelation in an alkaline medium. J Sol-Gel Sci Technol 58, 625–635 (2011). https://doi.org/10.1007/s10971-011-2437-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2437-4

Keywords

Navigation