Skip to main content
Log in

Synthesis of transparent silica aerogels with low density and better hydrophobicity by controlled sol–gel route and subsequent atmospheric pressure drying

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present paper, attempts have been made to produce transparent silica aerogels with low density and better hydrophobicity by controlled sol–gel route and subsequent atmospheric pressure drying. The hydrogels were prepared by hydrolysis and polycondensation of sodium silicate (Na2SiO3) in the presence of acetic acid catalyzed water followed by several washing steps with water, methanol and hexane, respectively. The surface modification of the wet gel was carried out using a mixture of hexamethyldisilazane (HMDS) in hexane. Since, the sol–gel chemistry provides a straightforward method to control the physical and optical properties of the aerogels, the influence of various sol–gel parameters viz. gel washing time, molar ratios of CH3COOH/Na2SiO3 and HMDS/Na2SiO3 and silylation period on the physical and optical properties of the aerogels have been investigated. The aerogels have been characterized by bulk density, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric and Differential Thermal Analysis (TG-DTA), Atomic Absorption Spectroscopy (AAS), Scanning Electron Microscopy (SEM) studies and Contact angle measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kocon L, Despetis F, Phalippou J (1998) J Non-Cryst Solids 225:96. doi:10.1016/S0022-3093(98)00322-6

    Article  CAS  Google Scholar 

  2. Haranath D, Pajonk GM, Wagh PB, Venkateswara Rao A (1997) Mater Chem Phys 49:129. doi:10.1016/S0254-0584(96)01924-4

    Article  CAS  Google Scholar 

  3. Zhou B (1998) J Non-Cryst Solids 225:101. doi:10.1016/S0022-3093(98)00106-9

    Article  Google Scholar 

  4. Smith D, Maskara A, Boes U (1998) J Non-Cryst Solids 225:254. doi:10.1016/S0022-3093(98)00125-2

    Article  CAS  Google Scholar 

  5. Carlson G, Lewis D, Mckinley K, Richardson J, Tillostson T (1995) J Non-Cryst Solids 186:372. doi:10.1016/0022-3093(95)00069-0

    Article  ADS  CAS  Google Scholar 

  6. Schwertfeger F, Frank D, Schmidt M (1928) J Non-Cryst Solids 225:24. doi:10.1016/S0022-3093(98)00102-1

    Article  Google Scholar 

  7. Rao AP, Rao AV, Pajonk GM (2005) J Sol-Gel Sci Technol 36:285. doi:10.1007/s10971-005-4662-1

    Article  CAS  Google Scholar 

  8. Prakash SS, Brinker CJ, Hurd AJ, Rao SM (1995) Nature 374:439. doi:10.1038/374439a0

    Article  ADS  CAS  Google Scholar 

  9. Heimenz PC (1977) Principles of colloid and surface chemistry. Marcel Dekkar, New York

    Google Scholar 

  10. Kistler SS (1932) J Phys Chem 36:52. doi:10.1021/j150331a003

    Article  CAS  Google Scholar 

  11. Bikerman JJ (1958) Surface chemistry: theory and applications, 2nd edn. Academic Press, New York, p 343

    Google Scholar 

  12. Venkateswara Rao A, Pajonk GM (2001) J Non-Cryst Solids 285:202. doi:10.1016/S0022-3093(01)00454-9

    Article  ADS  CAS  Google Scholar 

  13. Einarsrud MA, Nilsen E, Riggaci A, Pajonk GM, Buathier S, Valette D, Durant M, Chevalier B, Nitz P, Ehrburger-Dolle F (2001) J Non-Cryst Solids 285:4. doi:10.1016/S0022-3093(01)00423-9

    Article  Google Scholar 

  14. Reichenauer G (2004) J Non-Cryst Solids 350:3482

    Google Scholar 

  15. Parvathy Rao A, Pajonk GM, Rao AV (2005) J Mater Sci 40:3481. doi:10.1007/s10853-005-2853-3

    Article  Google Scholar 

  16. Kondoh E et al (2000) Jpn J Appl Phys 39(7A, pt.1):3919

    Article  ADS  CAS  Google Scholar 

  17. Gun’ko VM, Vedamuthu MS, Henderson GL, Blitz JP (2000) J Colloid Interface Sci 228:157. doi:10.1006/jcis.2000.6934

    Article  PubMed  CAS  Google Scholar 

  18. Hering N, Schriber K, Riedel R, Lichtenberger O, Woltersodorf J (2001) Appl Organomental Chem 15:879

    Article  CAS  Google Scholar 

  19. Yoldas BE (1984) J Non-Cryst Solids 63:145. doi:10.1016/0022-3093(84)90393-4

    Article  ADS  CAS  Google Scholar 

  20. Smith CE, Mueller D, Matz P, Reidy R (2006) In: Tsui TY, Joo YC, Volinsky AA, Michaelson L, Lane M (eds) MRS proceeding, vol 914, F04-04

Download references

Acknowledgements

The authors are grateful to the Condensed Matter Advisory Committee, Department of Science and Technology (DST), New Delhi, Government of India, for the financial support for this work through a major research project on “Aerogels” (no. SR/S2/CMP-67/2006). Poonam M. Shewale is highly thankful to the Shivaji University Kolhapur for providing ‘Departmental Research Fellowship’. One of the authors Dr. A Parvathy Rao is highly thankful to the DST for the Senior Research Associateship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venkateswara Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shewale, P.M., Venkateswara Rao, A., Parvathy Rao, A. et al. Synthesis of transparent silica aerogels with low density and better hydrophobicity by controlled sol–gel route and subsequent atmospheric pressure drying. J Sol-Gel Sci Technol 49, 285–292 (2009). https://doi.org/10.1007/s10971-008-1888-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1888-8

Keywords

Navigation