Skip to main content
Log in

Preparation of high performance nanocomposite elastomer: effect of reaction conditions on in situ silica generation of high content in natural rubber

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Effect of amines on an in situ silica generation in natural rubber was investigated, and n-hexylamine, n-heptylamine and n-octylamine were found to increase the in situ silica content. The nanometer sized silica particles up to ca. 80 parts per hundred rubber by weight were generated in situ in the rubber matrix via a sol–gel reaction of tetraethoxysilane. Additionally, dispersion of the silica in the rubbery matrix was more homogeneous than that of commercial silica dispersed by a conventional mechanical mixing. In this in situ silica generation, the polarity and solubility in water of amine were influential factors for controlling the in situ silica content in the rubbery matrix. The obtained high in situ silica filled natural rubber was useful to prepare high performance nanocomposite elastomers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Erman B, Mark JE (1997) Structures and properties of rubberlike networks. Oxford University Press, New York

    Google Scholar 

  2. Kohjiya S, Ikeda Y (2000) Rubber Chem Technol 73:534

    CAS  Google Scholar 

  3. Mark JE, Pan S-J (1982) Macromol Chem Rapid Commun 3:681

    Article  CAS  Google Scholar 

  4. Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol-gel processing. Academic Press, New York

    Google Scholar 

  5. Hench LL, Ulrich RD (1985) Science of ceramic chemical processing. John Wiley & Sons, New York

    Google Scholar 

  6. Sakka S (1988) The science of the sol-gel process. Agune Shofusya, Tokyo (in Japanese)

    Google Scholar 

  7. Kohjiya S, Yajima A, Yoon JR, Ikeda Y (1994) Nippon Gomu Kyokaishi 67:859 (in Japanese)

    CAS  Google Scholar 

  8. Ikeda Y, Tanaka A, Kohjiya S (1997) J Mater Chem 7:445

    Google Scholar 

  9. Hashim AS, Azahari B, Ikeda Y, Kohjiya S (1998) Rubber Chem Technol 71:289

    CAS  Google Scholar 

  10. Ikeda Y, Kohjiya S (1997) Polymer 38:4417

    Article  CAS  Google Scholar 

  11. Hashim S, Ikeda Y, Kohjiya S (1995) Polym Int 38:111

    Article  CAS  Google Scholar 

  12. Tanahashi H, Osanai S, Shigekuni M, Lio S, Murakami K, Ikeda Y, Kohjiya S (1998) Rubber Chem Technol 71:38

    CAS  Google Scholar 

  13. Toutorski IA, Tkachenko TE, Maliavski NI (1998) J Sol-Gel Sci Technol 13:1057

    Article  CAS  Google Scholar 

  14. Yoshikai K, Ohsaki T, Furukawa M (2002) J Appl Polym Sci 85:2053

    Article  CAS  Google Scholar 

  15. Yamashita S, Yamada A, Ohata M, Kohjiya S (1985) Makromol Chem 186:1373, 2269

    Google Scholar 

  16. Hashim AS, Ikeda Y, Kohjiya S (1995) Polym Int 38:111

    Article  CAS  Google Scholar 

  17. Gonzalez L, Rodríguez A, de Benito JL, Marcos-Fernández A (1997) J Appl Polym Sci 63:1353

    Article  CAS  Google Scholar 

  18. Sunada K, Takeshita H, Miya M, Nakamura T, Takenaka K, Shiomi T (2003) Nippon Gomu Kyokaishi 76:234

    CAS  Google Scholar 

  19. Kohjiya S, Murakami K, Iio S, Tanahashi T, Ikeda Y (2001) Rubber Chem Technol 74:16

    CAS  Google Scholar 

  20. Murakami K, Lio S, Ikeda Y, Ito H, Tosaka M, Kohjiya S (2003) J Mater Sci 38:1447

    Article  CAS  Google Scholar 

  21. Ikeda Y, Kameda Y (2004) J Sol-Gel Sci Technol 31:137

    Article  CAS  Google Scholar 

  22. Poompradub S, Kohjiya S, Ikeda Y (2005) Chem Lett 43:672

    Article  Google Scholar 

  23. Ikeda Y, Poompradub S (2006) PCT/Japanese Patent 2006/306124

  24. http://w-chemdb.nies.go.jp/

  25. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca, NY

    Google Scholar 

  26. Nakauchi H, Utsunomiya T, Masuda K, Inoue S, Naito K (1987) Nippon Gomu Kyokaishi 60:267

    CAS  Google Scholar 

  27. Solomons TWG, Fryhle CB (2004) Organic chemistry, 8th edn. John Wiley & Sons, USA

    Google Scholar 

  28. Breiner JM, Mark JE, Beaucage G (1999) J Polym Sci Part B Polym Phys 37:1421

    Article  CAS  Google Scholar 

  29. Osseo-Asare K, Arriagada FJ (1999) J Colloid Interface Sci 218:68

    Article  CAS  Google Scholar 

  30. Debuigne F, Jeunieau L, Wiame M, Nagy JB (2000) Langmuir 16:7605

    Article  CAS  Google Scholar 

  31. Nippon Yushi Gakkai (ed) (2005) Kaimen to Kaimen Kasseizai, Tokyo, p.201 (in Japanese)

Download references

Acknowledgement

This research was partially supported by Grant-in-Aid for Science Research (C) No. 19550208 from JSPS and the Research Grants from Hosokawa Powder Technology Foundation (2005) and President of KIT to Y. I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Ikeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, Y., Poompradub, S., Morita, Y. et al. Preparation of high performance nanocomposite elastomer: effect of reaction conditions on in situ silica generation of high content in natural rubber. J Sol-Gel Sci Technol 45, 299–306 (2008). https://doi.org/10.1007/s10971-008-1682-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-008-1682-7

Keywords

Navigation