Skip to main content
Log in

Improvement of the bioactivity of organic–inorganic hybrid aerogels/wollastonite composites with TiO2

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Organic–inorganic hybrid aerogels containing P and Ti have been synthesized by supercritical drying of alkogels prepared by hydrolysis and poly-condensation of metalo-organic precursors under high-power ultrasound. These materials become bioactive when doped with Ca. Wollastonite particles (CaSiO3) were added as an active phase, instead of incorporating Ca into the aerogel atomic network. These particles had previously been precipitated and were then added to the sol. The aerogels were studied by Fourier transform infrared analysis, scanning electron microscopy coupled with energy dispersive spectroscopy and X-ray diffraction and N2 adsorption. The stress–strain behaviours were evaluated under compression to obtain the Young’s modulus. It was found that the incorporation of TiO2 into wollastonite-P2O5 hybrid aerogels increased their capacity to form apatite and, consequently, improving their bioactive response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Krupa D, Baszkiewicz J, Kozubowski JA, Barcz A, Sobczak JW, Bilinski A, Lewandowska-Szumiel M, Rajchel B (2005) Biomaterials 26:2847

    Article  CAS  Google Scholar 

  2. Mackenzie JD (1994) J Sol–Gel Sci Tech 2:81

    Article  CAS  Google Scholar 

  3. de la Rosa-Fox N, Esquivias L, Piñero M (2003) In: Nalwa SH (ed) Handbook of organic–inorganic hybrid materials and nanocomposites, vol. 1. American Scientific Publishers, CA, pp 241

    Google Scholar 

  4. Chen Q, Miyata N, Kokubo T, Nakamura T (2000) J Biomed Mater Res 51(4):605

    Article  CAS  Google Scholar 

  5. Esquivias L, Morales-Flórez V, Piñero M, de la Rosa-Fox N, Ramírez J, González-Calbet J, Salinas A, Vallet-Regí M (2005) Mater Res Soc Symp Proc 847:EE12.1

    Google Scholar 

  6. Liu X, Ding Ch, Chu PK (2004) Biomaterials 25:1755

    Article  CAS  Google Scholar 

  7. de Aza PN, Aza AH, de Aza S (2005) Bol Soc Esp Ceram V 44(3):89

    Google Scholar 

  8. Suslick KS (1997) In: Ertl G, Knözinger H, Weitkamp J (eds) Handbook of heterogeneous catalysis. VCH, p 1350

  9. Padilla S, Román J, Carenas A, Vallet-Regí M (2005) Biomaterials 26:475

    Article  CAS  Google Scholar 

  10. Balamurugan A, Sockalingum G, Fauré J, Banchet V, Wortham L, Bouthors S, Laurent-Maquin D, Balossier G (2006) Mater Lett 60:3752

    Article  CAS  Google Scholar 

  11. Im JK-H, Lee S-B, Kim K-M, Lee Y-K (2007) Surf Coat Technol. Available on line doi:10.1016/j.surfcoat.2007.07.081

  12. Lao J, Nedelec JM, Moretto Ph, Jallot E (2007) Nucl Instrum Methods Phys Res B 261:488

    Article  CAS  Google Scholar 

  13. Kokubo T, Matsushita T, Takadama H (2007) J Eur Ceram Soc 27:1553

    Article  CAS  Google Scholar 

  14. Léaustic A, Babonneau F, Livage J (1989) Chem Mater 1(2):240

    Article  Google Scholar 

  15. Léaustic A, Babonneau F, Livage J (1989) Chem Mater 1(2):248

    Article  Google Scholar 

  16. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24(6):721

    Article  CAS  Google Scholar 

  17. Martin AI, Salinas AJ, Vallet-Regí M (2005) J Eur Ceram Soc 25:3533

    Article  CAS  Google Scholar 

  18. Kokubo T, Takadama H (2006) Biomaterials 27:2907

    Article  CAS  Google Scholar 

  19. Santos A, Toledo-Fernández JA, Mendoza R, Gago-Duport L, de la Rosa-Fox N, Piñero M, Esquivias L (2007) Ind Eng Chem Res 46:103

    Article  CAS  Google Scholar 

  20. Branda F, Fresa R, Costantini A, Buri A (1996) Biomaterials 17:2247

    Article  CAS  Google Scholar 

  21. Ricardo Costa OR, Marivalda Pereira M, Fernando Lameiras S, Wander Vasconcelos L (2005) J Mater Sci-Mater M 16:927

    Google Scholar 

  22. Rámila A, Vallet-Regi M (2001) Biomaterials 22:2301

    Article  Google Scholar 

  23. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds, Part A: theory and applications in inorganic chemistry, 5th edn. Wiley, p 359

  24. Liu D-M, Yang Q, Troczynski T, Tseng WJ (2002) Biomaterials 23:1679

    Article  CAS  Google Scholar 

  25. Jung HY, Gupta RK, Oh EO, Kim YH, Whang CM (2005) J Non-Cryst Solids 351:372

    Article  CAS  Google Scholar 

  26. Lee K-Y, Lee Y-H, Kim H-M, Koh M-Y, Ahn S-H, Lee H-K (2005) Curr Appl Phys 5:453

    Article  Google Scholar 

  27. Téllez L, Rubio J, Rubio F, Morales E, Oteo JL (2004) Spectrosc Lett 37:11

    Article  CAS  Google Scholar 

  28. Ning CQ, Greish Y, El-Ghannam A (2004) J Mater Sci-Mater M 15:1227

    Article  CAS  Google Scholar 

  29. Pleshko N, Boskey A, Mendelsohn R (1991) Biophys J 60:786

    Article  CAS  Google Scholar 

  30. Xianghui W, Chengkang C, Dali M, Ling J, Ming L (2005) Mater Sci Eng C 25:455

    Article  CAS  Google Scholar 

  31. Alemany MI, Velasquez P, de la Casa-Lillo MA, De Aza PN (2005) J Non-Cryst Solids 351:1716

    Article  CAS  Google Scholar 

  32. Téllez L, Rubio F, Peña-Alonso R, Rubio J (2004) Bol So Esp Ceram 43(5):883

    Google Scholar 

  33. Yabuta T, Tsuru K, Hayakawa S, Osaka A (2004) J Sol–Gel Sci Tech 31:273

    Article  CAS  Google Scholar 

  34. Manzano M, Salinas AJ, Vallet-Regí M (2006) Prog Solid State Chem 34:267

    Article  CAS  Google Scholar 

  35. Sreekanth Chakradhar RP, Nagabhushana BM, Chandrappa GT, Ramesh KP, Rao JL (2006) Mater Chem Phys 95:169

    Article  CAS  Google Scholar 

  36. Aburatani Y, Tsuru K, Hayakawa S, Osaka A (2002) Mater Sci Eng C 20:195

    Article  Google Scholar 

  37. Kamitakahara M, Kawashita M, Miyata N, Kokubo T, Nakamura T (2002) J Mater Sci-Mater M 13:1015

    Article  CAS  Google Scholar 

  38. Liu X, Ding Ch, Wang Z (2001) Biomaterials 22:2007

    Article  CAS  Google Scholar 

  39. Fernández-Lorenzo C, Esquivias L, Barboux P, Maquet J, Taulelle F (1994) J Non-Cryst Solids 176:189

    Article  Google Scholar 

  40. Morales-Flórez V (2007) Modelos Estructurales y Propiedades Mecánicas de Aerogeles Híbridos. Ph D Thesis, University of Seville, Spain

  41. Barrett EP, Joyner LG, Halenda PP (1951) J Am Chem Soc 73:373

    Article  CAS  Google Scholar 

  42. Wan X, Chang Ch, Mao D, Jiang L, Li M (2005) Mater Sci Eng C 25:455

    Article  CAS  Google Scholar 

  43. Chen Q, Miyata N, Kokubo T, Nakamura T (2001) J Mater Sci-Mater M 12:515

    Article  CAS  Google Scholar 

  44. Miyata N, Fuke K-I, Chen Q, Kawashita M, Kokubo T, Nakamura T (2004) Biomaterials 25:1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Spanish Ministerio de Educación y Ciencia and the Consejería de Innovación Ciencia y Empresa of the Junta de Andalucía (Spain) (Projects MAT2005-01583 and TEP 790, respectively), for the financial support provided. R. Mendoza-Serna thanks the U.N.A.M., DGAPA, México, for the scholarship supporting his sabbatical stay at the Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Cádiz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Esquivias.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toledo Fernández, J.A., Mendoza-Serna, R., Santos, A. et al. Improvement of the bioactivity of organic–inorganic hybrid aerogels/wollastonite composites with TiO2 . J Sol-Gel Sci Technol 45, 261–267 (2008). https://doi.org/10.1007/s10971-007-1674-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-007-1674-z

Keywords

Navigation