Skip to main content

Advertisement

Log in

Structural genomics studies of human caries pathogen Streptococcus mutans

  • Published:
Journal of Structural and Functional Genomics

Abstract

Gram-positive bacterium Streptococcus mutans is the primary causative agent of human dental caries. To better understand this pathogen at the atomic structure level and to establish potential drug and vaccine targets, we have carried out structural genomics research since 2005. To achieve the goal, we have developed various in-house automation systems including novel high-throughput crystallization equipment and methods, based on which a large-scale, high-efficiency and low-cost platform has been establish in our laboratory. From a total of 1,963 annotated open reading frames, 1,391 non-membrane targets were selected prioritized by protein sequence similarities to unknown structures, and clustered by restriction sites to allow for cost-effective high-throughput conventional cloning. Selected proteins were over-expressed in different strains of Escherichia coli. Clones expressed soluble proteins were selected, expanded, and expressed proteins were purified and subjected to crystallization trials. Finally, protein crystals were subjected to X-ray analysis and structures were determined by crystallographic methods. Using the previously established procedures, we have so far obtained more than 200 kinds of protein crystals and 100 kinds of crystal structures involved in different biological pathways. In this paper we demonstrate and review a possibility of performing structural genomics studies at moderate laboratory scale. Furthermore, the techniques and methods developed in our study can be widely applied to conventional structural biology research practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Montelione GT, Anderson S (1999) Structural genomics: keystone for a Human Proteome Project. Nat Struct Biol 6(1):11–12

    Article  CAS  PubMed  Google Scholar 

  2. Burley SK (2000) An overview of structural genomics. Nat Struct Biol 7:932–934

    Article  CAS  PubMed  Google Scholar 

  3. Gong WM, Liu HY, Niu LW, Shi YY, Tang YJ, Teng MK, Wu JH, Liang DC, Wang DC, Wang JF, Ding JP, Hu HY, Huang QH, Zhang QH, Lu SY, An JL, Liang YH, Zheng XF, Gu XC, Su XD (2003) Structural genomics efforts at the Chinese Academy of Sciences and Peking University. J Struct Funct Genomics 4(2–3):137–139

    Article  CAS  PubMed  Google Scholar 

  4. Kim Y, Dementieva I, Zhou M, Wu R, Lezondra L, Quartey P, Joachimiak G, Korolev O, Li H, Joachimiak A (2004) Automation of protein purification for structural genomics. J Struct Funct Genomics 5(1–2):111–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Stojanoff V (2004) A novel approach to high-throughput screening; a solution for structural genomics? Structure 12(7):1127–1128

    Article  CAS  PubMed  Google Scholar 

  6. Service R (2005) Structural biology. Structural genomics, round 2. Science 307(5715):1554–1558

    Article  PubMed  Google Scholar 

  7. Terwilliger TC, Stuart D, Yokoyama S (2009) Lessons from structural genomics. Annu Rev Biophys 38:371–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Terwilliger TC (2011) The success of structural genomics. J Struct Funct Genomics 12(2):43–44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Thielmann Y, Koepke J, Michel H (2012) The ESFRI Instruct Core Centre Frankfurt: automated high-throughput crystallization suited for membrane proteins and more. J Struct Funct Genomics 13(2):63–69

    Article  CAS  PubMed  Google Scholar 

  10. Kloppmann E, Punta M, Rost B (2012) Structural genomics plucks high-hanging membrane proteins. Curr Opin Struct Biol 22(3):326–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50(4):353–380

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Bleiweis AS, Oyston PC, Brady LJ (1992) Molecular, immunological and functional characterization of the major surface adhesion of Streptococcus mutans. Adv Exp Med Biol 327:229–241

    Article  CAS  PubMed  Google Scholar 

  13. Yamashita Y, Bowen WH, Burne RA, Kuramitsu HK (1993) Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infect Immun 61(9):3811–3817

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Quivey RG, Kuhnert WL, Hahn K (2001) Genetics of acid adaptation in oral streptococci. Crit Rev Oral Biol Med 12(4):301–314

    Article  CAS  PubMed  Google Scholar 

  15. Loesche WJ (1986) Role of Streptococcus mutans in human dental decay. Microbiol Rev 50(4):353–380

    CAS  PubMed Central  PubMed  Google Scholar 

  16. http://www.who.int/oral_health/disease_burden/global/en/

  17. Ajdić D, McShan WM, McLaughlin RE, Savić G, Chang J, Carson MB, Primeaux C, Tian R, Kenton S, Jia H, Lin S, Qian Y, Li S, Zhu H, Najar F, Lai H, White J, Roe BA, Ferretti JJ (2002) Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A 99(22):14434–14439

    Article  PubMed Central  PubMed  Google Scholar 

  18. Lemos JA, Quivey RG Jr, Koo H, Abranches J (2013) Streptococcus mutans: a new gram-positive paradigm? Microbiology 159(Pt 3):436–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Su XD, Liang Y, Li L, Nan J, Brostromer E, Liu P, Dong Y, Xian D (2006) A large-scale, high-efficiency and low-cost platform for structural genomics studies. Acta Crystallogr D Biol Crystallogr 62(Pt 8):843–851

    Article  PubMed  Google Scholar 

  20. Lei J, Li LF, Su XD (2009) Crystal Structures of Phosphotransferase System Enzymes PtxB (IIB(Asc)) and PtxA (IIA(Asc)) from Streptococcus mutans. J Mol Biol 386(2):465–475

    Article  CAS  PubMed  Google Scholar 

  21. Hou HF, Liang YH, Li LF, Su XD, Dong YH (2008) Crystal Structures of Streptococcus mutans 2′-Deoxycytidylate Deaminase and Its Complex with Substrate Analog and Allosteric Regulator dCTP.Mg(2 +). J Mol Biol 377(1):220–231

    Article  CAS  PubMed  Google Scholar 

  22. Fu TM, Almqvist J, Liang YH, Li L, Huang Y, Su XD (2011) Crystal structures of cobalamin-independent methionine synthase (MetE) from Streptococcus mutans: a dynamic zinc-inversion model. J Mol Biol 412(4):688–697

    Article  CAS  PubMed  Google Scholar 

  23. Li GL, Liu X, Nan J, Brostromer E, Li LF, Su XD (2009) Open-closed conformational change revealed by the crystal structures of 3-keto-L-gulonate 6-phosphate decarboxylase from Streptococcus mutans. Biochem Biophys Res Commun 381(3):429–433

    Article  CAS  PubMed  Google Scholar 

  24. Wang KT, Desmolaize B, Nan J, Zhang XW, Li LF, Douthwaite S, Su XD (2012) Structure of the bifunctional methyltransferase YcbY (RlmKL) that adds the m7G2069 and m2G2445 modifications in Escherichia coli 23S rRNA. Nucleic Acids Res 40(11):5138–5148

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Fu TM, Liu X, Li L, Su XD (2010) The structure of the hypothetical protein smu.1377c from Streptococcus mutans suggests a role in tRNA modification. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 66(Pt 7):771–775

    Article  CAS  Google Scholar 

  26. Wang Z, Li L, Su XD. Structural and functional characterization of a novel α/β hydrolase from cariogenic pathogen Streptococcus mutans. Proteins. 2013 doi:10.1002/prot.24418

  27. Brostromer E, Nan J, Su XD (2007) An automated image-collection system for crystallization experiments using SBS standard microplates. Acta Crystallogr D Biol Crystallogr 63(Pt 2):119–125

    Article  CAS  PubMed  Google Scholar 

  28. Brostromer E, Nan J, Li L, Su XD (2009) Solid-liquid interface method (SLIM): a new crystallization method for proteins. Biochem Biophys Res Commun 386(4):634–638

    Article  CAS  PubMed  Google Scholar 

  29. Chayen NE, Saridakis E (2008) Protein crystallization: from purified protein to diffraction-quality crystal. Nat Methods 5(2):147–153

    Article  CAS  PubMed  Google Scholar 

  30. Chayen NE (2002) Tackling the bottleneck of protein crystallization in the post-genomic era. Trends Biotechnol 20(3):98

    Article  CAS  PubMed  Google Scholar 

  31. Ellman GL (1959) Arch Biochem Biophys 82:70–77

    Article  CAS  PubMed  Google Scholar 

  32. Bulaj G, Kortemme T, Goldenberg DP (1998) Biochemistry 37:8965–8972

    Article  CAS  PubMed  Google Scholar 

  33. Mi W, Li L, Liang Y, Su XD (2008) Improved crystal quality of human chloride intracellular channel protein 2 by 5,5′-Dithio-bis(2-nitrobenzoic acid) modification. Biochem Biophys Res Commun 368(4):919–922

    Article  CAS  PubMed  Google Scholar 

  34. Fan XX, Zhou YF, Liu X, Li L, Su XD (2012) Ellman’s reagent DTNB in promoting crystallization and structural determination of Anabeana CcbP. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 68(Pt 11):1409–1414

    Article  CAS  Google Scholar 

  35. Zhao Y, Shi Y, Zhao W, Huang X, Wang D, Brown N, Brand J, Zhao J (2005) CcbP, a calcium-binding protein from Anabaena sp. PCC 7120, provides evidence that calcium ions regulate heterocyst differentiation. Proc Natl Acad Sci U S A 102:5744–5748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Shi Y, Zhao W, Zhang W, Ye Z, Zhao J (2006) Regulation of intracellular free calcium concentration during heterocyst differentiation by HetR and NtcA in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 103:11334–11339

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Natural Science Foundation of China (Grant No. 30530190), and 985 and 211 grants from Peking University. Due to space limit, it is difficult to list all people that have been involved in the project. Hereby, we would like to acknowledge all the group members that have contributed to this project during the period of 2005-2010, particularly Drs. Yuhe Liang, Xiaoyan Zhang, Na Yang, Yamei Yu, Wei Mi, Yanfeng Zhou, Jian Lei, Juan Wang, Xiaoyan Liu, Guilan Li, Kaituo Wang, Linglong Ma, Xiaojun Wang, Tianmin Fu, Xiang Liu, Xiangyu Liu, Mingjing Feng, Yuehua Liu, Xiaofang Cao, Dong Xing, Yihe huang, Yanli Cao, Yuhui Dong, Zengqiang Gao, Haifeng hou, and Shicheng Wei.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lanfen Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Nan, J., Li, D. et al. Structural genomics studies of human caries pathogen Streptococcus mutans . J Struct Funct Genomics 15, 91–99 (2014). https://doi.org/10.1007/s10969-014-9172-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-014-9172-3

Keywords

Navigation