Skip to main content
Log in

Evaluation of intensity and pulse width of different moderators for designing a new diffractometer for protein crystals with large unit cells in J-PARC/MLF

  • Published:
Journal of Structural and Functional Genomics

Abstract

We plan to design a high-resolution biomacromolecule neutron time-of-flight diffractometer, which allows us to collect data from crystals with unit cells above 250 Å, in the materials and life science experimental facility at the Japan Proton Accelerator Research Complex. This new diffractometer can be used for a detailed analysis of large proteins such as membrane proteins and supermolecular complex. A quantitative comparison of the intensity and pulse width of a decoupled moderator (DM) against a coupled moderator (CM) considering the pulse width time resolution indicated that the DM satisfies the criteria for our diffractometer rather than the CM. The results suggested that a characteristic feature of the DM, i.e., narrow pulse width with a short tail, is crucial for the separation of Bragg reflections from crystals with large unit cells. On the other hand, it should be noted that the weak signals from the DM are buried under the high-level background caused by the incoherent scattering of hydrogen atoms, especially, in the case of large unit cells. We propose a profile-fitting integration method combined with the energy loss functions and a background subtraction method achieved by employing the statistics-sensitive nonlinear iterative peak-clipping algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arai M (2008) Pramana J phys 71:629–638

    Article  CAS  Google Scholar 

  2. Arai M, Crawford K (2009) Neutron sources and Facilities Neutron Imaging and Applications. Springer Science + Business Media, LLC, New York, p 13

    Book  Google Scholar 

  3. Tanaka I, Kusaka K, Hosoya T, Niimura N, Ohhara T, Kurihara K, Yamada T, Ohnishi Y, Tomoyori K, Yokoyama T (2010) Acta Cryst Sect D 66:1194–1197

    Article  CAS  Google Scholar 

  4. Landau L (1944) J Exp Phys (USSR) 8:201–205

    CAS  Google Scholar 

  5. Vavilov PV (1957) J Exp Theor Phys (USSR) 32:920–923

    CAS  Google Scholar 

  6. Tomoyori K, Kusaka K, Yamada T, Hosoya T, Ohhara T, Kurihara K, Tanaka I, Katagiri M, Niimura N (2013) Nucl Instr Meth Phys Res Sect A 723:128–135

    Article  CAS  Google Scholar 

  7. Schultz AJ, Thiyagarajan P, Hodges JP, Rehm C, Myles DAA, Langan P, Mesecar AD (2005) J Appl Cryst 38:964–974

    Article  CAS  Google Scholar 

  8. Jauch W (1997) J Neut Res 6:161–171

    Article  CAS  Google Scholar 

  9. Ryan CG, Clayton E, Griffin WL, Sie SH, Cousens DR (1988) Nucl Instr Meth Phys Res Sect B 34:396–402

    Article  Google Scholar 

  10. Jauch W (1993) Trans ACA 29:55–61

    CAS  Google Scholar 

  11. Morhac M, Klimna J, Matousek V, Veselsky M, Turzo I (1997) Nucl Instr Meth Phys Res Sect A 401:113–132

    Article  CAS  Google Scholar 

  12. Morhac M (2007) Nucl Instr Meth Phys Res Sect A 581:821–830

    Article  CAS  Google Scholar 

  13. Morhac M, Matousek V (2008) Appl Spectrosc 62:91–106

    Article  CAS  PubMed  Google Scholar 

  14. Morhac M, Matousek V, Kliman J, Krupa L, Jandel M (2003) Nucl Instr Meth Phys Res Sect A 502:784–786

    Article  CAS  Google Scholar 

  15. Diamond R (1969) Acta Cryst Sect A 5:43–55

    Article  Google Scholar 

  16. Ford GC (1974) J Appl Cryst 7:555–564

    Article  Google Scholar 

  17. Otwinowski Z, Minor W (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods in Enzymology. Academic Press, New York 276

    Google Scholar 

  18. Bourgeois D, Nurizzo D, Kahn R, Cambillau C (1998) J Appl Cryst 31:22–35

    Google Scholar 

  19. Jorgensen JD, Johnson DH, Mueller MH, Peterson SW, Worlton JG, Von Dreele RB (1978) In: Proceedings of the Conference on Diffraction Profile Analysis, Cracow, Poland, pp 20–22

  20. Von Dreele RB, Jorgensen JD, Windsor CG (1982) J Appl Cryst 15:581–589

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuaki Tomoyori.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomoyori, K., Kusaka, K., Yamada, T. et al. Evaluation of intensity and pulse width of different moderators for designing a new diffractometer for protein crystals with large unit cells in J-PARC/MLF. J Struct Funct Genomics 15, 131–135 (2014). https://doi.org/10.1007/s10969-014-9170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-014-9170-5

Keywords

Navigation