Skip to main content
Log in

NMR structure of the N-terminal domain of the replication initiator protein DnaA

  • Original Paper
  • Published:
Journal of Structural and Functional Genomics

Abstract

DnaA is an essential component in the initiation of bacterial chromosomal replication. DnaA binds to a series of 9 base pair repeats leading to oligomerization, recruitment of the DnaBC helicase, and the assembly of the replication fork machinery. The structure of the N-terminal domain (residues 1–100) of DnaA from Mycoplasma genitalium was determined by NMR spectroscopy. The backbone r.m.s.d. for the first 86 residues was 0.6 ± 0.2 Å based on 742 NOE, 50 hydrogen bond, 46 backbone angle, and 88 residual dipolar coupling restraints. Ultracentrifugation studies revealed that the domain is monomeric in solution. Features on the protein surface include a hydrophobic cleft flanked by several negative residues on one side, and positive residues on the other. A negatively charged ridge is present on the opposite face of the protein. These surfaces may be important sites of interaction with other proteins involved in the replication process. Together, the structure and NMR assignments should facilitate the design of new experiments to probe the protein–protein interactions essential for the initiation of DNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Marszalek J, Kaguni JM (1994) J Biol Chem 269:2883–2890

    Google Scholar 

  2. Kato J (2005) Crit Rev Biochem Mol Biol 40:331–342

    Article  PubMed  CAS  Google Scholar 

  3. Messer W (2002) FEMS Microbiol Rev 26:355–374

    PubMed  CAS  Google Scholar 

  4. Messer W, Blaesing F, Majika J, Nardmann J, Schaper S, Schmidt A, Seitz H, Speck C, Tuengler D, Wegrzyn G, Weigel C, Welzeck M, Zakrzewska-Czerwinska J (1999) Biochemie 81:819–825

    Article  CAS  Google Scholar 

  5. Sutton MD, Kaguni JM (1997) J Mol Biol 274:546–561

    Article  PubMed  CAS  Google Scholar 

  6. Erzberger JP, Pirruccello MM, Berger JM (2002) EMBO J 21:4763–4773

    Article  PubMed  CAS  Google Scholar 

  7. Erzberger JP, Mott MI, Berger JM (2006) Nat Struct Biol 13:676–683

    Article  CAS  Google Scholar 

  8. Fujikawa N, Kurumizaka H, Nureki O, Terada T, Shirouzu M, Katayama T, Yokoyama S (2003) Nucleic Acids Res 31:2077–2086

    Article  PubMed  CAS  Google Scholar 

  9. Schaper S, Messer W (1995) Proteins 28:1–9

    Article  Google Scholar 

  10. Weigel C, Schmidt A, Seitz H, Tuengler D, Welzeck M, Messer W (1999) Mol Microbiol 34:53–66

    Article  PubMed  CAS  Google Scholar 

  11. Speck C, Messer W (2001) EMBO J 20:1469–1476

    Article  PubMed  CAS  Google Scholar 

  12. Speck C, Weigel C, Messer W (1999) EMBO J 18:6169–6176

    Article  PubMed  CAS  Google Scholar 

  13. Crooke E, Thresher R, Hwang DS, Griffin J, Kornberg A (1993) J Mol Biol 233:16–24

    Article  PubMed  CAS  Google Scholar 

  14. Funnell BE, Baker TA, Kornberg A (1987) J Biol Chem 262:10327–10334

    PubMed  CAS  Google Scholar 

  15. Messer W, Blaesing F, Jakimowicz D, Krause M, Majka J, Nardmann J, Schaper S, Seitz H, Speck C, Weigel C, Wegrzyn G, Welzeck M, Zakrzewska-Czerwinska J (2001) Biochimie 83:5–12

    Article  PubMed  CAS  Google Scholar 

  16. Jakimowicz D, Majka J, Konopu G, Wegrzyn G, Messer W, Schrempf H, Zakrzewska-Czerwinska J (2000) J Mol Biol 298:351–364

    Article  PubMed  CAS  Google Scholar 

  17. Majka J, Zakrzewska-Czerwinska J, Messer W (2001) J Biol Chem 276:6243–6252

    Article  PubMed  CAS  Google Scholar 

  18. Felczak M, Simmons LA, Kaguni JM (2005) J Biol Chem 280:24627–24633

    Article  PubMed  CAS  Google Scholar 

  19. Simmons LA, Felczak M, Kaguni JM (2003) Mol Microbiol 49:849–858

    Article  PubMed  CAS  Google Scholar 

  20. Seitz H, Weigel C, Messer W (2000) Mol Microbiol 37:1270–1279

    Article  PubMed  CAS  Google Scholar 

  21. Ishida T, Akimitsu N, Kashioka T, Hatano M, Kubota T, Ogata Y, Sekimizu K, Katayama T (2004) J Biol Chem 279:45546–45555

    Article  PubMed  CAS  Google Scholar 

  22. Chandonia JM, Kim SH, Brenner SE (2006) Proteins 62:356–370

    Article  PubMed  CAS  Google Scholar 

  23. Shin DH, Kim JS, Yokota H, Kim R, Kim SH (2006) Protein Sci 15:921–928

    Article  PubMed  CAS  Google Scholar 

  24. Marley J, Lu M, Bracken C (2001) J Biomol NMR 20:71–75

    Article  PubMed  CAS  Google Scholar 

  25. Demeler G (2005). In: Scott DJ, Rowe AJ (eds) Modern analytical ultracentrifugation: techniques and methods, Royal Society of Chemistry, UK, pp 210–229

  26. Grzeisek S, Bax A (1992) J Magn Reson 99:201–207

    Google Scholar 

  27. Kay LE, Xu GY, Yamazaki T (1994) J Magn Reson 109 A:129–133

    Article  Google Scholar 

  28. Stonehouse J, Clowes RT, Shaw GL, Keeler J, Laue ED (1995) J Biomol NMR 5:226–232

    Article  CAS  Google Scholar 

  29. Grzeisek S, Bax A (1992) J Am Chem Soc 114:6291–6293

    Article  Google Scholar 

  30. Wittekind M, Mueller L (1993) J Magn Reson 101 B:201–205

    Google Scholar 

  31. Grzesiek S, Bax A (1993) J Biomol NMR 3:185–204

    PubMed  CAS  Google Scholar 

  32. Grzesiek S, Anglister J, Bax A (1993) J Magn Reson 101 B:114–119

    Google Scholar 

  33. Driscoll PC, Clore GM, Marion D, Wingfield PT, Gronenborn AM (1990) Biochemistry 29:3542–3556

    Article  PubMed  CAS  Google Scholar 

  34. Kay LE, Xu GY, Singer A, Muhandram D, Forman-Kay J (1993) J Magn Reson 101 B:333–337

    Google Scholar 

  35. Kuboniwa H, Grzesiek S, Delaglio F, Bax A (1994) J Biomol NMR 4:871–878

    Article  PubMed  CAS  Google Scholar 

  36. Neri D, Szyperski T, Otting G, Senn H, Wuthrich K (1989) Biochemistry 28:7510–7516

    Article  PubMed  CAS  Google Scholar 

  37. Szyperski T, Neri D, Leiting B, Otting G, Wuthrich K (1992) J Biomol NMR 2:323–334

    Article  PubMed  CAS  Google Scholar 

  38. Vuister GW, Clore GM, Gronenborn AM, Powers R, Garrett DS, Tschudin R, Bax A (1993) J Magn Reson 101 B:210–213

    Google Scholar 

  39. Ottiger M, Delaglio F, Bax A (1998) J Magn Reson 131:373–378

    Article  PubMed  CAS  Google Scholar 

  40. Tjandra N, Bax A (1997) J Am Chem Soc 119:9576–9577

    Article  CAS  Google Scholar 

  41. Hansen MR, Mueller L, Pardi A (1998) Nat Struct Biol 5:1065–1074

    Article  PubMed  CAS  Google Scholar 

  42. Clore GM, Gronenborn AM, Bax A (1998) J Magn Reson 133:216–221

    Article  PubMed  CAS  Google Scholar 

  43. Losonczi JA, Andrec M, Fischer MW, Prestegard JH (1999) J Magn Reson 138:334–342

    Article  PubMed  CAS  Google Scholar 

  44. Zweckstetter M, Bax A (2000) J Am Chem Soc 122:3791–3792

    Article  CAS  Google Scholar 

  45. Bax A, Kontaxis G, Tjandra N (2001) Methods Enzymol 339:127–174

    Article  PubMed  CAS  Google Scholar 

  46. Bhattacharya A, Tejero R, Montelione GT (2007) Proteins 66:778–795

    Article  PubMed  CAS  Google Scholar 

  47. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) J Biomol NMR 8:477–486

    Article  PubMed  CAS  Google Scholar 

  48. Luthy R, Bowie JU, Eisenberg D (1992) Nature 356:83–85

    Article  PubMed  CAS  Google Scholar 

  49. Sippl MJ (1993) Proteins 17:355–362

    Article  PubMed  CAS  Google Scholar 

  50. Lovell SC, Davis IW, Arendall WB 3rd, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Proteins 50:437–450

    Google Scholar 

  51. Rice LM, Brunger AT (1994) Proteins 19:277–290

    Article  PubMed  CAS  Google Scholar 

  52. Stein EG, Rice LM, Brunger AT (1997) J Magn Reson 124:154–164

    Article  PubMed  CAS  Google Scholar 

  53. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) J Magn Reson 160:65–73

    Article  PubMed  CAS  Google Scholar 

  54. Fletcher CM, Jones DNM, Diamond R, Neuhaus D (1996) J Biomol NMR 8:292–310

    Article  CAS  Google Scholar 

  55. Holm L, Sander C (1993) J Mol Biol 233:123–138

    Article  PubMed  CAS  Google Scholar 

  56. Huang YJ, Swapna GV, Rajan PK, Ke H, Xia B, Shukla K, Inouye M, Montelione GT (2003) J Mol Biol 327:521–536

    Article  PubMed  CAS  Google Scholar 

  57. Rubin SM, Pelton JG, Yokota H, Kim R, Wemmer DE (2003) J Struct Funct Genomics 4:235–243

    Article  PubMed  CAS  Google Scholar 

  58. Abe Y, Jo T, Matsuda Y, Matsunaga C, Katayama T, Ueda T (2007) J Biol Chem 282:17816–17827

    Article  PubMed  CAS  Google Scholar 

  59. Holm L, Park J (2000) Bioinformatics 16:566–567

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. King for mass spectral analysis, and J. Erzberger, M. Mott, and J. Berger for helpful discussions. We also thank M. Doucleff for recording several spectra. T.J.L. acknowledges the University of California Biotechnology Research and Education Program for financial support. This work was supported by grant GM62412 to the Berkeley Structural Genomics Center from the National Institute of General Medical Sciences, National Institutes of Health. We also thank NSF (BBS87W134 and 0119304) and NIH (RR15756 and GM068933) for funding NMR equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Wemmer.

Additional information

Thomas J. Lowery and Jeffrey G. Pelton contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lowery, T.J., Pelton, J.G., Chandonia, JM. et al. NMR structure of the N-terminal domain of the replication initiator protein DnaA. J Struct Funct Genomics 8, 11–17 (2007). https://doi.org/10.1007/s10969-007-9022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-007-9022-7

Keywords

Navigation