Skip to main content
Log in

Natural radioactivity and the associated radiation hazards in archeological pottery and pottery-making clay samples collected from Senjikothamangalam of Villupuram district, Tamil Nadu, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, pottery and pottery-making clay samples have been collected from the archeological site of Senjikothamangalam of Villupuram district, Tamil Nadu for radioactivity studies to assess the radiation hazards for human beings who are handling these materials and living in this area. For pottery samples, the observed mean activity concentration is 16, 35, and 162 Bq kg−1 for 226Ra, 232Th, and 40K respectively. Similarly, 24, 37, and 240 Bq kg−1 for 226Ra, 232Th, and 40K respectively, for pottery-making clay samples. The observed mean excess lifetime cancer risk for pottery is 0.152 × 10−3 mSv y−1 and pottery-making clay is 0.19 × 10−3 mSv y−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. UNSCEAR (2000) United Nations Scientific Committee on the effect of atomic radiation. Sources and effects of ionizing radiation. Report to General Assembly, with Scientific Annexes, United Nations, New York

  2. Beretka J, Matthew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys 48(1):87–95. https://doi.org/10.1097/00004032-198501000-00007

    Article  CAS  PubMed  Google Scholar 

  3. Yasmin S, Barua BS, Khandaker MU, Kamal M, Rashid MA, Sani SA, Ahmed H, Nikouravan B, Bradley DA (2018) The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: geological characteristics and environmental implication. Results Phys 1(8):1268–1274. https://doi.org/10.1016/j.rinp.2018.02.013

    Article  Google Scholar 

  4. Ravisankar R, Rajalakshmi A, Eswaran P, Gajendiran V, Meenakthe shisundram V (2007) Radioactivity levels in the oil of salt field area, Kelambakkam, Tamilnadu, India. Nucl Sci Tech 18(6):372–375. https://doi.org/10.1016/S1001-8042(08)60011-1

    Article  CAS  Google Scholar 

  5. United Nations Scientific Committee on the Effects of Atomic Radiation (1993) Sources and effects of ionizing radiation, United Nations scientific committee on the effects of atomic radiation (UNSCEAR) 1993 report: report to the general assembly, with scientific annexes. United Nations

  6. Murugesan S, Mullainathan S, Ramasamy V, Meenakshisundaram V (2011) Radioactivity and radiation hazard assessment of Cauvery River, Tamilnadu, India. Iran J Radiat Res 8(4):211–222

    Google Scholar 

  7. Tieh TT, Ledger EB, Rowe MW (1980) Release of uranium from granitic rocks during in situ weathering and initial erosion (central Texas). Chem Geol 29(1–4):227–248. https://doi.org/10.1016/0009-2541(80)90022-4

    Article  CAS  Google Scholar 

  8. National Research Council (1999) Natural radioactivity and radiation. In: Evaluation of guidelines for exposures to technologically enhanced naturally occurring radioactive materials. National Academies Press (US)

  9. Salbu B, Skipperud L, Lind OC (2015) Sources contributing to radionuclides in the environment: with focus on radioactive particles. In: Walther C, Gupta DK (eds) Radionuclides in the environment. Springer, Cham, pp 1–36. https://doi.org/10.1007/978-3-319-22171-7_1

    Chapter  Google Scholar 

  10. Abe Y, Iizawa Y, Terada Y, Adachi K, Igarashi Y, Nakai I (2014) Detection of uranium and chemical state analysis of individual radioactive microparticles emitted from the Fukushima nuclear accident using multiple synchrotron radiation X-ray analyses. Analyt Chem 86:8521–8525. https://doi.org/10.1021/ac501998d

    Article  CAS  Google Scholar 

  11. AMAP (2004) AMAP assessment 2002: radioactivity in the Arctic. Arctic Monitoring and Assessment Programme, Oslo, Norway, pp 1–100. https://www.amap.no/documents/doc/amap-assessment-2002-radioactivity-in-the-arctic/93

  12. Cresswell AJ, Sanderson DCW (2012) Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: a case study of Irish Sea beaches. Sci Total Environ 437:285–296. https://doi.org/10.1016/j.scitotenv.2012.08.064

    Article  CAS  PubMed  Google Scholar 

  13. Velraj G, Tamilarasu S, Ramya R (2015) FTIR, XRD and SEM-EDS studies of archaeological pottery samples from recently excavated site in Tamil Nadu, India. Mater Today Proc 2(3):934–942. https://doi.org/10.1016/j.matpr.2015.06.012

    Article  Google Scholar 

  14. Palanivel R, Kumar UR (2011) Thermal and spectroscopic analysis of ancient potteries. Rom J Phys 56(1–2):195–208

    CAS  Google Scholar 

  15. Ravisankar R, Chandrasekaran A, Kiruba S, Senthilkumar G, Maheswaran C (2010) Analysis of ancient potteries of Tamilnadu, India by spectroscopic techniques. Indian J Sci Technol 3(8):858–862

    Article  CAS  Google Scholar 

  16. Ravisankar R, Kiruba S, Shamira C, Naseerutheen A, Balaji PD, Seran M (2011) Spectroscopic techniques applied to the characterization of recently excavated ancient potteries from Thiruverkadu Tamilnadu, India. Microchem J 99(2):370–375. https://doi.org/10.1016/j.microc.2011.06.012

    Article  CAS  Google Scholar 

  17. State district profile. Tamil Nadu water supply and drainage board (TWAD) (2022) https://www.twadboard.tn.gov.in/content/links

  18. Sathya P, Velraj G, Meyvel S (2012) Fourier transform infrared spectroscopic study of ancient brick samples from Salavankuppam Region, Tamilnadu, India. Adv Appl Sci Res 3(2):776–779

    CAS  Google Scholar 

  19. Ravisankar R, Senthilkumar G, Kiruba S, Chandrasekaran A, Jebakumar PP (2010) Mineral analysis of coastal sediment samples of Tuna, Gujarat, India. Indian J Sci Technol 3(7):774–780. https://doi.org/10.17485/ijst/2010/v3i7.14

    Article  CAS  Google Scholar 

  20. Ravisankar R, Kiruba S, Eswaran P, Senthilkumar G, Chandrasekaran A (2010) Mineralogical characterization studies of ancient potteries of Tamilnadu, India by FT-IR spectroscopic technique. E J Chem 7(S1):S185–S190. https://doi.org/10.1155/2010/643218

    Article  CAS  Google Scholar 

  21. dos Santos Júnior JA, de Araújo EE, Fernández ZH, dos Santos Amaral R, do Nascimento Santos JM, Milán MO (2021) Measurement of natural radioactivity and radium equivalent activity for pottery making clay samples in Paraíba and Rio Grande do Norte-Brazil. Environ Adv 6:100121. https://doi.org/10.1016/j.envadv.2021.100121

    Article  CAS  Google Scholar 

  22. Sathish V, Chandrasekaran A, Manigandan S, Tamilarasi A, Thangam V (2022) Assessment of natural radiation hazards and function of heat production rate in lake sediments of Puliyanthangal Lake surrounding the Ranipet industrial area, Tamil Nadu. J Radioanal Nucl Chem 331(3):1495–1505. https://doi.org/10.1007/s10967-022-08207-2

    Article  CAS  Google Scholar 

  23. Mahur AK, Kumar R, Mishra M, Sengupta D, Prasad R (2008) An investigation of radon exhalation rate and estimation of radiation doses in coal and fly ash samples. Appl Radiat Isot 66(3):401–406. https://doi.org/10.1016/j.apradiso.2007.10.006

    Article  CAS  PubMed  Google Scholar 

  24. Sathish V, Chandrasekaran A, Tamilarasi A, Thangam V (2022) Natural radioactivity and mineral assessment in red and black colored soils collected from agricultural area of Tiruvannamalai district of Tamil Nadu, India. J Radioanal Nucl Chem 331(11):4513–4528. https://doi.org/10.1007/s10967-022-08570-0

    Article  CAS  Google Scholar 

  25. Pilakouta MI, Pappa FK, Patiris DL, Tsabaris C, Kalfas CA (2018) A methodology for expanding the use of NaI (Tl) based spectrometry in environmental radioactivity measurements. Appl Radiat Isot 139:159–168. https://doi.org/10.1016/j.apradiso.2018.04.032

    Article  CAS  PubMed  Google Scholar 

  26. International Atomic Energy Agency-IAEA (1987) Preparation of g-ray spectrometry reference materials RGU-1, RGTh-1 and RGK-1. Report-IAEA/RL/148, Vienna

  27. Thangam V, Rajalakshmi A, Chandrasekaran A, Arun B, Viswanathan S, Venkatraman B, Bera S (2022) Determination of natural radioactivity in beach sands collected along the coastal area of Tamilnadu, India using gamma ray spectrometry. J Radioanal Nucl Chem 331(3):1207–1223. https://doi.org/10.1007/s10967-022-08193-5

    Article  CAS  Google Scholar 

  28. Senthil Kumar CK, Chandrasekaran A, Harikrishnan N, Ravisankar R (2022) Measurement of 226Ra, 232Th and 40K and the associated radiological hazards in Ponnai river sand, Tamilnadu, India using Gamma ray spectrometry. J Environ Anal Chem 102(17):5432–5444. https://doi.org/10.1080/03067319.2020.1796996

    Article  CAS  Google Scholar 

  29. Quindos LS, Fernandez PL, Rodenas C, Gomez-Arozamena J, Arteche J (2004) Conversion factors for external gamma dose derived from natural radionuclides in soils. J Environ Radioact 71(2):139–145. https://doi.org/10.1016/S0265-931X(03)00164-4

    Article  CAS  PubMed  Google Scholar 

  30. Knoll GF (2000) Radiation detection and measurement, 3rd edn. Wiley, New York

    Google Scholar 

  31. Benedetto GED, Laviano R, Sabbatini L, Zambonin PG (2002) Infrared spectroscopy in the mineralogical characterization of ancient pottery. J Cult Herit 3:177–186. https://doi.org/10.1016/S1296-2074(02)01178-0

    Article  Google Scholar 

  32. Berry IG (1974) Selected powder diffraction data for mineralogy Joint Committee on Powder Diffraction Standard, Swanthmore P.A. https://doi.org/10.1180/minmag.1975.040.310.14

  33. Senthil Kumar CK, Chandrasekaran A (2020) Multivariate statistical tool to analyse the environmental magnetic data in Ponnai River Sand, Tamil Nadu. Environ Earth Sci 79(21):1–9. https://doi.org/10.1007/s12665-020-09241-7

    Article  Google Scholar 

  34. NEA-OECD (1979) Nuclear energy agency. Exposure to radiation from natural radioactivity in building materials, Report by NEA Group of Experts, OECD, Paris

  35. Stranden E (1976) Some aspects on radioactivity of building materials. Phys Norv 8:167–173

    CAS  Google Scholar 

  36. Pan Z, Yang Y, Guo M (1984) Natural radiation and radioactivity in China. Radiat Prot Dosim 7:235–238. https://doi.org/10.1093/oxfordjournals.rpd.a080236

    Article  Google Scholar 

  37. Ackers JG, Den Boer JF, De Jong P, Wolschrijn RA (1985) Radioactivity and radon exhalation rates of building materials in the Netherlands. Sci Total Environ 45:151–156. https://doi.org/10.1016/0048-9697(85)90215-3

    Article  CAS  PubMed  Google Scholar 

  38. Papastefanou C, Manolopoulou M, Charalambous S (1983) Exposure from the radioactivity in building material. Health Phys 45:349–361

    Google Scholar 

  39. Hewamanna R, Sumithrarachchi CS, Mahawatte P, Nanayakkara HL, Ratnayake HC (2001) Natural radioactivity and gamma dose from Sri Lankan clay bricks used in building construction. Appl Radiat Isot 54(2):365–369. https://doi.org/10.1016/S0969-8043(00)00107-X

    Article  CAS  PubMed  Google Scholar 

  40. Khandaker MU, Jojo PJ, Kassim HA, Amin YM (2012) Radiometric analysis of construction materials using HPGe gamma-ray spectrometry. Radiat Prot Dosim 152(1–3):33–37. https://doi.org/10.1093/rpd/ncs145

    Article  CAS  Google Scholar 

  41. Tufail M (2012) Radium equivalent activity in the light of UNSCE the AR report. Environ Monit Assess 184(9):5663–5667. https://doi.org/10.1007/s10661-011-2370-6

    Article  CAS  PubMed  Google Scholar 

  42. Mohanty AK, Sengupta D, Das SK, Vijayan V, Saha SK (2004) Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India. Radiat Meas 38(2):153–165. https://doi.org/10.1016/j.radmeas.2003.08.003

    Article  CAS  Google Scholar 

  43. Saini K, Bajwa BS (2017) Mapping natural radioactivity of soil samples in different regions of Punjab, India. Appl Radiat Isot 127:73–81. https://doi.org/10.1016/j.apradiso.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  44. Ramasamy V, Suresh G, Meenakshisundaram V, Ponnusamy V (2011) Horizontal and vertical characterization of radionuclides and minerals in river sediments. Appl Radiat Isot 69(1):184–195. https://doi.org/10.1016/j.apradiso.2010.07.020

    Article  CAS  PubMed  Google Scholar 

  45. Singh J, Singh H, Singh S, Bajwa BS, Sonkawade RG (2009) Comparative study of natural radioactivity levels in soil samples from the Upper Siwaliks and Punjab, India using gamma-ray spectrometry. J Environ Radioact 100(1):94–98. https://doi.org/10.1016/j.jenvrad.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  46. Mbonu CC, Ben UC (2021) Assessment of radiation hazard indices due to natural radioactivity in soil samples from Orlu, Imo State, Nigeria. Heliyon 7(8):07812. https://doi.org/10.1016/j.heliyon.2021.e07812

    Article  CAS  Google Scholar 

  47. Ravisankar R, Vanasundari K, Suganya M, Raghu Y, Rajalakshmi A, Chandrasekaran A, Sivakumar S, Chandramohan J, Vijayagopal P, Venkatraman B (2014) Multivariate statistical analysis of radiological data of building materials used in Tiruvannamalai, Tamilnadu, India. Appl Radiat Isot 85:114–127. https://doi.org/10.1016/j.apradiso.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  48. Senthilkumar B, Dhavamani V, Ramkumar S, Philominathan P (2010) Measurement of gamma radiation levels in soil samples from Thanjavur using γ-ray spectrometry and estimation of population exposure. J Med Phys 35(1):48. https://doi.org/10.4103/0971-6203.55966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Krieger VR (1981) Radioactivity of construction materials. Betonwerk Fertigteil Tech 47(5):468–473

    CAS  Google Scholar 

  50. Kang TW, Park WP, Han YU, Bong KM, Kim K (2020) Natural and artificial radioactivity in volcanic ash soils of Jeju Island, Republic of Korea, and assessment of the radiation hazards: importance of soil properties. J Radioanal Nucl Chem 323(3):1113–1124. https://doi.org/10.1007/s10967-020-07024-9

    Article  CAS  Google Scholar 

  51. Lubin JH, Boice JD (1997) Lung cancer risk from residential radon meta-analysis of eight epidemiology studies. J Nat Cancer Inst 89(1):49–57. https://doi.org/10.1093/jnci/89.1.49

    Article  CAS  PubMed  Google Scholar 

  52. Annamalai GR, Ravisankar R, Rajalakshmi A, Chandrasekaran A, Rajan K (2014) Spectroscopic characterization of recently excavated archaeological potsherds from Tamilnadu, India with multi-analytical approach. Spectrochim Acta A Mol Biomol Spectrosc 133:112–118. https://doi.org/10.1016/j.saa.2014.04.188

    Article  CAS  Google Scholar 

  53. Kodama H (1985) Infrared spectra of minerals: Reference guide to identification and characterization of minerals for the study of soils.

  54. Maritan L, Mazzoli C, Nodari L, Russo U (2005) Second Iron age grey pottery from Este (northeastern Italy): study of provenance and technology. Appl Clay Sci 29(1):31–44. https://doi.org/10.1016/j.clay.2004.09.003

    Article  CAS  Google Scholar 

  55. Colombini MP, Giachi G, Modugno F, Ribechini E (2005) Characterisation of organic residues in pottery vessels of the Roman age from Antinoe (Egypt). Microchem J 79(1–2):83–90. https://doi.org/10.1016/j.microc.2004.05.004

    Article  CAS  Google Scholar 

  56. Gomathy Y, Chandrasekaran A, Aravinthraj M, Udayaseelan J (2021) A preliminary study of ancient potteries collected from Kundureddiyur, Tamil Nadu, India. Microchem J 165:106100. https://doi.org/10.1016/j.microc.2021.106100

    Article  CAS  Google Scholar 

  57. Joint Committee on Powder Diffraction Standards (JCPDS) (1999) Mineral powder diffraction file

  58. Kolo MT, Aziz SA, Khandaker MU, Asaduzzaman K, Amin YM (2015) Evaluation of radiological risks due to natural radioactivity around Lynas Advanced Material Plant environment, Kuantan, Pahang, Malaysia. Environ Sci Pollut Res 22(17):13127–13136. https://doi.org/10.1007/s11356-015-4577-5

    Article  CAS  Google Scholar 

  59. Chandrasekaran A, Ravisankar R, Rajalakshmi A, Eswaran P, Vijayagopal P, Venkatraman B (2015) Assessment of natural radioactivity and function of minerals in soils of Yelagiri hills, Tamilnadu, India by Gamma Ray spectroscopic and Fourier Transform Infrared (FTIR) techniques with statistical approach. Spectrochim Acta A 136:1734–1744. https://doi.org/10.1016/j.saa.2014.10.075

    Article  CAS  Google Scholar 

  60. Tanasković I, Golobocanin D, Miljević N (2012) Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters. J Geochem Explor 112:226–234. https://doi.org/10.1016/j.gexplo.2011.08.014

    Article  CAS  Google Scholar 

  61. Schmidt G (2013) Description and critical environmental evaluation of the REE refining plant LAMP near Kuantan/Malaysia. Radiological and non-radiological environmental consequences of the plant's operation and its wastes. Report prepared on behalf of NGO BSave Malaysia, Stop Lynas^ (SMSL), Kuantan/Malaysia by ÖkoInstitut e.V. D-10179 Berlin, Germany

Download references

Acknowledgements

I would like to express my sincere gratitude to Mr. Veeraragavan, a Retired school teacher at a Government primary school, in Arasur, Villupuram district for helping us to collect samples from the archaeological site of Senjikothamangalam in Villupuram district, Tamil Nadu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chandrasekaran.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamilarasi, A., Karthikayini, S., Sathish, V. et al. Natural radioactivity and the associated radiation hazards in archeological pottery and pottery-making clay samples collected from Senjikothamangalam of Villupuram district, Tamil Nadu, India. J Radioanal Nucl Chem 332, 2257–2268 (2023). https://doi.org/10.1007/s10967-023-08822-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-023-08822-7

Keywords

Navigation