Skip to main content
Log in

New data on Ho(α,x) reactions and the aspects of 167Tm and 165Er production for medical use

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The production cross sections of 163,165,166,167,168Tm in alpha-particle induced reactions on 165Ho were measured in 27–60 MeV energy range using the stacked-foil activation technique. The thick target yield of the medical isotope 167Tm is 2.22 MBq/µAh. The radioisotope 165Tm that can be used in the generator system to obtain 165Er is also produced. The measured excitation functions were compared with the data from TENDL-2019 and TENDL-2021 libraries and the previous experimental values. Various methods of 165Tm and 165Er production were compared. The reaction 165Ho(α,4n)165Tm → 165Er was considered as a potential method for the production of 165Er.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Qaim SM (2019) Theranostic radionuclides: recent advances in production methodologies. J Radioanal Nucl Chem 322:1257–1266. https://doi.org/10.1007/s10967-019-06797-y

    Article  CAS  Google Scholar 

  2. Kassis AII (2011) Molecular and cellular radiobiological effects of Auger emitting radionuclides. Radiat Prot Dosimetry 143:241–247. https://doi.org/10.1093/rpd/ncq385

    Article  PubMed  CAS  Google Scholar 

  3. Stöcklin G, Qaim SM, Rösch F (1995) The impact of radioactivity on medicine. Radiochim Acta 70(71):249–272. https://doi.org/10.1524/ract.1995.7071.special-issue.249

    Article  Google Scholar 

  4. Sobolev AS, Aliev RA, Kalmykov SN (2016) Radionuclides emitting short-range particles and modular nanotransporters for their delivery to target cancer cells. Russ Chem Rev 85:1011–1032. https://doi.org/10.1070/RCR4601

    Article  CAS  Google Scholar 

  5. Ku A, Facca VJ, Cai Z, Reilly RM (2019) Auger electrons for cancer therapy – a review. EJNMMI Radiopharm Chem 4:27. https://doi.org/10.1186/s41181-019-0075-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Koumarianou E, Slastnikova TA, Pruszynski M, Rosenkranz AA, Vaidyanathan G, Sobolev AS, Zalutsky MR (2014) Radiolabeling and in vitro evaluation of 67Ga-NOTA-modular nanotransporter – a potential Auger electron emitting EGFR-targeted radiotherapeutic. Nucl Med Biol 41:441–449. https://doi.org/10.1016/j.nucmedbio.2014.03.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pirovano G, Wilson TC, Reiner T (2021) Auger: the future of precision medicine. Nucl Med Biol 96–97:50–53. https://doi.org/10.1016/j.nucmedbio.2021.03.002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Qaim SM (2017) Nuclear data for production and medical application of radionuclides: present status and future needs. Nucl Med Biol 44:31–49. https://doi.org/10.1016/j.nucmedbio.2016.08.016

    Article  PubMed  CAS  Google Scholar 

  9. Filosofov D, Kurakina E, Radchenko V (2021) Potent candidates for targeted Auger therapy: production and radiochemical considerations. Nucl Med Biol 94–95:1–19. https://doi.org/10.1016/j.nucmedbio.2020.12.001

    Article  PubMed  CAS  Google Scholar 

  10. Uusijärvi H, Bernhardt P, Rösch F, Maecke HR, Forssell-Aronsson E (2006) Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med 47:807–814

    PubMed  Google Scholar 

  11. Stepanek J, Larsson B, Weinreich R (1996) Auger-electron spectra of radionuclides for therapy and diagnostics. Acta Oncol (Madr) 35:863–868. https://doi.org/10.3109/02841869609104038

    Article  CAS  Google Scholar 

  12. Chandra R, Braunstein P, Duhov L, Tilbury RS (1974) Evaluation of 167Tm HEDTA as a bone scanning agent in humans and its comparison with 18 F. Br J Radiol 47:51–53. https://doi.org/10.1259/0007-1285-47-553-51

    Article  PubMed  CAS  Google Scholar 

  13. Ando A, Ando I, Sakamoto K, Hiraki T, Hisada K, Takeshita M (1983) Affinity of 167Tm-citrate for tumor and liver tissue. Eur J Nucl Med. https://doi.org/10.1007/BF00252943

    Article  PubMed  Google Scholar 

  14. Nayak D, Lahiri S (1999) Application of radioisotopes in the field of nuclear medicine. J Radioanal Nucl Chem 242:423–432. https://doi.org/10.1007/BF02345573

    Article  CAS  Google Scholar 

  15. Neves M, Kling A, Oliveira A (2005) Radionuclides used for therapy and suggestion for new candidates. J Radioanal Nucl Chem 266:377–384. https://doi.org/10.1007/s10967-005-0920-5

    Article  CAS  Google Scholar 

  16. Medvedev DG, Mausner LF, Greene GA, Hanson AL (2008) Activation of natural Hf and Ta in relation to the production of 177Lu. Appl Radiat Isot 66:1300–1306. https://doi.org/10.1016/j.apradiso.2008.02.090

    Article  PubMed  CAS  Google Scholar 

  17. Gracheva N, Carzaniga TS, Schibli R, Braccini S, van der Meulen NP (2020) 165Er: a new candidate for Auger electron therapy and its possible cyclotron production from natural holmium targets. Appl Radiat Isot 159:109079. https://doi.org/10.1016/j.apradiso.2020.109079

    Article  PubMed  CAS  Google Scholar 

  18. Tárkányi F, Hermanne A, Takács S, Király B, Spahn I, Ignatyuk AV (2010) Experimental study of the excitation functions of proton induced nuclear reactions on 167Er for production of medically relevant 167Tm. Appl Radiat Isot 68:250–255. https://doi.org/10.1016/j.apradiso.2009.10.043

    Article  PubMed  CAS  Google Scholar 

  19. Hermanne A, Adam Rebeles R, Tárkányi F, Takács S, Spahn I, Ignatyuk AV (2011) High yield production of the medical radioisotope 167Tm by the 167Er(d,2n) reaction. Appl Radiat Isot 69:475–481. https://doi.org/10.1016/j.apradiso.2010.10.003

    Article  PubMed  CAS  Google Scholar 

  20. Homma Y, Sugitani Y, Matsui Y, Matsuura K, Kurata K (1980) Cyclotron production of 167Tm from natural erbium and natural holmium. Top Catal 31:505–508. https://doi.org/10.1016/0020-708X(80)90314-2

    Article  CAS  Google Scholar 

  21. Tárkányi F, Hermanne A, Takács S, Ditrói F, Király B, Yamazaki H, Baba M, Mohammadi A, Ignatyuk AV (2009) Activation cross sections of proton induced nuclear reactions on ytterbium up to 70 MeV. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 267:2789–2801. https://doi.org/10.1016/j.nimb.2009.05.075

    Article  CAS  Google Scholar 

  22. Zandi N, Sadeghi M, Afarideh H (2013) Evaluation of the cyclotron production of 165Er by different reactions. J Radioanal Nucl Chem 295:923–928. https://doi.org/10.1007/s10967-012-2116-0

    Article  CAS  Google Scholar 

  23. Kormazeva ES, Khomenko IA, Unezhev VN, Aliev RA (2021) Experimental study of α-particle induced reactions on natural erbium for the production of Auger-emitters 167Tm, 165Er and 169Yb. Appl Radiat Isot 177:109919. https://doi.org/10.1016/j.apradiso.2021.109919

    Article  PubMed  CAS  Google Scholar 

  24. Tárkányi F, Takács S, Hermanne A, Ditrói F, Király B, Baba M, Ohtsuki T, Kovalev SF, Ignatyuk AV (2009) Investigation of production of the therapeutic radioisotope 165Er by proton induced reactions on erbium in comparison with other production routes. Appl Radiat Isot 67:243–247. https://doi.org/10.1016/j.apradiso.2008.10.006

    Article  PubMed  CAS  Google Scholar 

  25. Fiaccabrino DE, Kunz P, Radchenko V (2021) Potential for production of medical radionuclides with on-line isotope separation at the ISAC facility at TRIUMF and particular discussion of the examples of 165Er and 155Tb. Nucl Med Biol 94–95:81–91. https://doi.org/10.1016/j.nucmedbio.2021.01.003

    Article  PubMed  CAS  Google Scholar 

  26. Sadeghi M, Enferadi M, Tenreiro C (2010) Nuclear model calculations on the production of auger emitter 165Er for targeted radionuclide therapy. J Mod Phys 01:217–225. https://doi.org/10.4236/jmp.2010.14033

    Article  CAS  Google Scholar 

  27. Qaim SM, Spahn I, Scholten B, Neumaier B (2016) Uses of alpha particles, especially in nuclear reaction studies and medical radionuclide production. Radiochim Acta 104:601–624. https://doi.org/10.1515/ract-2015-2566

    Article  CAS  Google Scholar 

  28. Usman AR, Khandaker MU, Haba H, Otuka N, Murakami M (2020) Production cross sections of thulium radioisotopes for alpha-particle induced reactions on holmium. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 469:42–48. https://doi.org/10.1016/j.nimb.2020.02.036

    Article  CAS  Google Scholar 

  29. Wilkinson G, Hicks HG (1949) Radioactive isotopes of the rare earths. I. experimental techniques and thulium isotopes. Phys Rev 75:1370–1378. https://doi.org/10.1103/PhysRev.75.1370

    Article  CAS  Google Scholar 

  30. Glorius J, Sonnabend K, Görres J, Robertson D, Knörzer M, Kontos A, Rauscher T, Reifarth R, Sauerwein A, Stech E, Tan W, Thomas T, Wiescher M (2014) Experimental cross sections of 165Ho(a, n)168Tm and166Er(a, n)169Yb for optical potential studies relevant for the astrophysical g-process. Phys Rev C 89:065808. https://doi.org/10.1103/PhysRevC.89.065808

    Article  CAS  Google Scholar 

  31. Mukherjee S, Mohan Rao AV, Rao JR (1991) Pre-equilibrium analysis of the excitation functions of (α, xn) reactions on silver and holmium. Nuovo Cim A 104:863–874. https://doi.org/10.1007/BF02820560

    Article  Google Scholar 

  32. Gadkari MS, Patel HB, Shah DJ, Singh NL (1997) Study of preequilibrium decay in (α, x n) reactions in holmium up to 70 MeV. Phys Scr 55:147–151. https://doi.org/10.1088/0031-8949/55/2/005

    Article  CAS  Google Scholar 

  33. Tárkányi F, Hermanne A, Király B, Takács S, Ignatyuk AV (2010) Study of excitation functions of alpha-particle induced nuclear reactions on holmium for 167Tm production. Appl Radiat Isot 68:404–411. https://doi.org/10.1016/j.apradiso.2009.11.043

    Article  PubMed  CAS  Google Scholar 

  34. Singh BP, Prasad R (1995) Measurement and analysis of excitation functions for the reactions 165Ho(α, xn) (x=1-3) in the energy range ≈ 10–40 MeV. Phys Scr 51:440–445. https://doi.org/10.1088/0031-8949/51/4/004

    Article  CAS  Google Scholar 

  35. Singh NL, Agarwal S, Rama Rao J (1992) Pre-equilibrium neutron emission in alpha particle induced reactions. J Phys G Nucl Part Phys 18:927–934. https://doi.org/10.1088/0954-3899/18/5/019

    Article  CAS  Google Scholar 

  36. Rao JR, Rao AVM, Mukherjee S, Upadhyay R, Singh NL, Agarwal S, Chaturvedi L, Singh PP (1987) Non-equilibrium effects in alpha-particle-induced reactions in light, medium and heavy nuclei up to 120 MeV. J Phys G Nucl Phys 13:535–542. https://doi.org/10.1088/0305-4616/13/4/017

    Article  CAS  Google Scholar 

  37. Sau J, Demeyer A, Chéry R (1968) Étude expérimentale et analyse des fonctions d’excitation 165Ho(α, χn) et 169Tm (α, χn). Nucl Phys A 121:131–144. https://doi.org/10.1016/0375-9474(68)90502-2

    Article  CAS  Google Scholar 

  38. Martin GC, Pilger RC (1966) Absolute cross sections and excitation functions for α-particle-induced reactions of 165Ho, 164Er, 166Er and 167Er. Nucl Phys 89:481–496. https://doi.org/10.1016/0029-5582(66)90925-4

    Article  CAS  Google Scholar 

  39. Ditrói F (2002) Determination of the charged particle beam energy/intensity uncertainties at multi-target irradiations. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 188:115–119. https://doi.org/10.1016/S0168-583X(01)01037-0

    Article  Google Scholar 

  40. Rösch F, Qaim SM, Stöcklin G (1993) Nuclear data relevant to the production of the positron emitting radioisotope 86Y via the 86Sr(p, n)- andnatRb(3He, xn)-processes. Radiochim Acta 61:1–8. https://doi.org/10.1524/ract.1993.61.1.1

    Article  Google Scholar 

  41. IAEA (2019) Live chart of nuclides. https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

  42. Williamson CF, Boujot J-P, Picard J (1966) Tables of range and stopping power of chemical elements for charged particles of energy 0,5 to 500 MeV Centre d’Etudes Nucléaires de Saclay, Gif-sur-Yvette

  43. Ziegler JF, Ziegler MD, Biersack JP (2010) SRIM – the stopping and range of ions in matter (2010). Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 268:1818–1823. https://doi.org/10.1016/j.nimb.2010.02.091

    Article  CAS  Google Scholar 

  44. Hermanne A, Ignatyuk AV, Capote R et al (2018) Reference cross sections for charged-particle monitor reactions. Nucl Data Sheets 148:338–382. https://doi.org/10.1016/j.nds.2018.02.009

    Article  CAS  Google Scholar 

  45. Pritychenko B, Sonzogni A (2016) Q-value calculator (QCalc) In: NNDC, Brookhaven Natl. Lab. https://www.nndc.bnl.gov/qcalc/index.jsp

  46. Joint Committee for Guides in Metrology (2008) Evaluation of measurement data | Guide to the expression of uncertainty in measurement (JCGM 100:2008 GUM 1995 with minor corrections) http://www.bipm.org/en/publications/guides/gum.html

  47. Strijckmans K (2005) Charged particle activation In: Encyclopedia of analytical science (2nd edn). ISBN 978-0-12-369397-6, Elsevier, pp 10–20. https://doi.org/10.1016/B0-12-369397-7/00003-0

  48. Koning AJ, Rochman D, Sublet J-C, Dzysiuk N, Fleming M, van der Marck S (2019) TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl Data Sheets 155:1–55. https://doi.org/10.1016/j.nds.2019.01.002

    Article  CAS  Google Scholar 

  49. Sitarz M, Nigron E, Guertin A, Haddad F, Matulewicz T (2019) New cross-sections for natMo(α, x) reactions and medical97Ru production estimations with radionuclide yield calculator. Instruments 3:1–12. https://doi.org/10.3390/instruments3010007

    Article  CAS  Google Scholar 

  50. Hilaire S, Goriely S (2021) Towards more predictive nuclear reaction modelling In: Proceedings of the 6th international workshop on compound-nuclear reactions and related topics CNR*18. pp 3–15. https://doi.org/10.1007/978-3-030-58082-7_1

  51. Bauge E (2015) “Full Model” nuclear data and covariance evaluation process using TALYS, total Monte Carlo and backward-forward Monte Carlo. Nucl Data Sheets 123:201–206. https://doi.org/10.1016/j.nds.2014.12.035

    Article  CAS  Google Scholar 

  52. Scott NE, Cobble J, Daly P (1968) A comparison of reactions induced by medium-energy 3He and 4He ions in heavy target nuclei. Nucl Phys A 119:131–145. https://doi.org/10.1016/0375-9474(68)90810-5

    Article  CAS  Google Scholar 

  53. Gadioli E, Erba EG (1984) A model for alpha-particle-induced reactions. Nuovo Cim A 81:66–78. https://doi.org/10.1007/BF02724155

    Article  Google Scholar 

  54. Tárkányi F, Hermanne A, Takács S, Ditrói F, Spahn I, Ignatyuk AV (2012) Activation cross-sections of proton induced nuclear reactions on thulium in the 20–45 MeV energy range. Appl Radiat Isot 70:309–314. https://doi.org/10.1016/j.apradiso.2011.08.020

    Article  PubMed  CAS  Google Scholar 

  55. Michel R, Gloris M, Protoschill J, Herpers U, Kuhnhenn J, Sudbrock F, Malmborg P, Kubik P (2002) Cross sections for the production of radionuclides by proton-induced reactions on W, Ta, Pb and Bi from thresholds up to 2.6 GeV. J Nucl Sci Technol 39:242–245. https://doi.org/10.1080/00223131.2002.10875084

    Article  Google Scholar 

  56. Michel R, Bodemann R, Busemann H et al (1997) Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 129:153–193. https://doi.org/10.1016/S0168-583X(97)00213-9

    Article  CAS  Google Scholar 

  57. Aliev RA, Priselkova AB, Khankin VV et al (2021) Production of medical radioisotope 167Tm by photonuclear reactions on natural ytterbium. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 508:19–23. https://doi.org/10.1016/j.nimb.2021.10.004

    Article  CAS  Google Scholar 

  58. Tárkányi F, Takács S, Hermanne A et al (2008) Study of activation cross sections of proton induced reactions on erbium for practical applications. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 266:4872–4876. https://doi.org/10.1016/j.nimb.2008.08.005

    Article  CAS  Google Scholar 

  59. Tárkányi F, Baba M, Ohtsuki T et al (2007) Study of activation cross-sections of deuteron induced reactions on erbium: production of radioisotopes for practical applications. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 259:829–835. https://doi.org/10.1016/j.nimb.2007.01.287

    Article  CAS  Google Scholar 

  60. Hermanne A, Tárkányi F, Takács S et al (2009) Excitation functions for production of medically relevant radioisotopes in deuteron irradiations of Pr and Tm targets. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 267:727–736. https://doi.org/10.1016/j.nimb.2008.12.017

    Article  CAS  Google Scholar 

  61. Tárkányi F, Ditrói F, Takács S et al (2014) New data on activation cross section for deuteron induced reactions on ytterbium up to 50 MeV. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 336:37–44. https://doi.org/10.1016/j.nimb.2014.06.011

    Article  CAS  Google Scholar 

  62. Aliev RA, Khomenko IA, Kormazeva ES (2021) Separation of 167Tm, 165Er and 169Yb from erbium targets irradiated by 60 MeV alpha particles. J Radioanal Nucl Chem 329:983–989. https://doi.org/10.1007/s10967-021-07865-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was done with the financial support of the National Research Center "Kurchatov Institute", order No. 2751. The authors dedicate the work to the memory of their colleague Sergei Terent’evich Latushkin, who until the last days of his life helped in performing experiments on the cyclotron.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Kormazeva.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file (DOCX 30 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kormazeva, E.S., Khomenko, I.A., Unezhev, V.N. et al. New data on Ho(α,x) reactions and the aspects of 167Tm and 165Er production for medical use. J Radioanal Nucl Chem 331, 4259–4269 (2022). https://doi.org/10.1007/s10967-022-08464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-022-08464-1

Keywords

Navigation