Skip to main content
Log in

Evaluation of naturally occurring radionuclides (K, Th and U) in volcanic soils from Fogo Island, Cape Verde

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Natural radionuclides K, Th and U were evaluated for the first time on volcanic soils of Fogo Island (Cape Verde) aiming to contribute for the background concentration of radiogenic elements in these soils, assessing radiation risk, and allowing accurate chronological luminescence studies. Potassium and particularly U appear to be more mobilized in the older soils, with a high radon loss when compared to recent ones. External dose rate varies between 0.97 and 3.47 Gy/y. The results obtained in this work are a benchmark for further studies, particularly for the evaluation of modifications due to the 2014–2015 volcanic episode on Fogo Island.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. UNSCEAR (2008) Sources and effects of ionizing radiation. United Nations Scientific Committee on the effects of atomic radiation. Annex B: exposures of the public and workers from various sources of radiation, vol I. United Nations Publications, New York

    Google Scholar 

  2. Singh J, Singh H, Singh S, Bajwa BS, Sonkawade RG (2009) Comparative study of natural radioactivity levels in soil samples from the upper Siwaliks and Punjab, India using gamma-ray spectrometry. J Environ Radioact 100:94–98

    Article  CAS  Google Scholar 

  3. Ngachin M, Garavaglia M, Giovani C, Kwato Njock MG, Nourreddine A (2008) Radioactivity level and soil radon measurement of a volcanic area in Cameroon. J Environ Radioact 99:1056e–1060e

    Article  Google Scholar 

  4. Aitken MJ (1999) Archaeological dating using physical phenomena. Rep Prog Phys M J Aitken Rep Prog Phys 62:1333–1376

    Article  CAS  Google Scholar 

  5. Trindade MJ, Prudêncio MI, Burbidge CI, Dias MI, Cardoso G, Marques R, Rocha F (2013) Distribution of naturally occurring radionuclides (K, Th and U) in weathered rocks of various lithological types from the uranium bearing region of Fornos de Algodres, Portugal. Mediterr Archaeol Archaeom 13(3):71–79

    Google Scholar 

  6. Trindade MJ, Prudêncio MI, Burbidge CI, Dias MI, Cardoso G, Marques R, Rocha F (2014) Study of an aplite dyke from the Beira uraniferous province in Fornos de Algodres area (Central Portugal): trace elements distribution and evaluation of natural radionuclides. Appl Geochem 44:111–120

    Article  CAS  Google Scholar 

  7. Kapanadze K, Magalashvili A, Imnadze P (2019) Distribution of natural radionuclides in the soils and assessment of radiation hazards in the Khrami Late Variscan crystal massif (Georgia). Heliyon 5:e01377

    Article  Google Scholar 

  8. Popic JM, Oughton DH, Salbu B, Skipperud L (2020) Transfer of naturally occurring radionuclides from soil to wild forest flora in an area with enhanced legacy and natural radioactivity in Norway. Environ Sci Process Impacts 22:350–363

    Article  Google Scholar 

  9. Agar O, Eke C, Boztosun I, Korkmaz ME (2015) Determination of naturally occurring radionuclides in soil samples of Ayrancı, Turkey. J Phys Conf Ser 590:012042

    Article  Google Scholar 

  10. Yasmin S, Barua BS, Khandaker MU, Kamal M, Rashid MdA, Sani SFA, Ahmed H, Nikouravan B, Bradley DA (2018) The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: geological characteristics and environmental implication. Results Phys 8:1268–1274

    Article  Google Scholar 

  11. Leal ALC, Lauria DC, Ribeiro FCA (2020) Natural radionuclide levels and the associated radiological risks in soils from the three mesoregions of Pernambuco state, Brazil. J Radioanal Nucl Chem 324:521–531

    Article  CAS  Google Scholar 

  12. Mehra R, Kumar S, Sonkawade R, Singh NP, Badhan K (2010) Analysis of terrestrial naturally occurring radionuclides in soil samples from some areas of Sirsa district of Haryana, India using gamma ray spectrometry. Environ Earth Sci 59:1159–1164

    Article  CAS  Google Scholar 

  13. Karo RM, Marpaung H, Gultom J, Pudjadi E, Siburian R (2017) The influence of Mount Sinabung volcanic ash and phoshate fertilizers on natural radionuclide content in agricultural soils. Chem Sci Rev Lett 6(24):2448–2452

    CAS  Google Scholar 

  14. Ramsiya M, Joseph A, Eappen KP, Visnuprasad AK (2019) Activity concentrations of radionuclides in soil samples along the coastal areas of Kerala, India and the assessment of radiation hazard indices. J Radioanal Nucl Chem 320:291–298

    Article  CAS  Google Scholar 

  15. Marques R, Prudêncio MI, Waerenborgh JC, Rocha F, Dias MI, Ruiz F, Ferreira da Silva E, Abad M, Muñoz AM (2014) Origin of reddening in a paleosol buried by lava flows in Fogo island (Cape Verde). J Afr Earth Sci 96:60–70

    Article  CAS  Google Scholar 

  16. Marques R, Waerenborgh JC, Prudêncio MI, Dias MI, Rocha F, Ferreira da Silva E (2014) Iron speciation in volcanic topsoils from Fogo island (Cape Verde)—iron oxide nanoparticles and trace elements concentrations. CATENA 113:95–106

    Article  CAS  Google Scholar 

  17. Murray AS, Aitken MJ (1988) Analysis of low-level naturally occurring radioactivity in small samples for use in thermoluminescence dating using high resolution gamma spectrometry. Int J Appl Radiat Isot 39:145–158

    Article  CAS  Google Scholar 

  18. Guibert P, Lahaye C, Bechtel F (2009) The importance of U-series disequilibrium of sediments in luminescence dating: a case study at the Roc de Marsal cave (Dordogne, France). Radiat Meas 44:223–231

    Article  CAS  Google Scholar 

  19. Reis MC (2007) A Radioactividade no Ambiente. Gazeta de Fisica 30:58–66

    Google Scholar 

  20. Le Bas TP, Masson DG, Holtom RT, Grevemeyer I (2007) Slope failures of the flanks of the southern Cape Verde Islands. In: Lykousis V, Sakellariou D, Locat J (eds) Submarine mass movements and their consequences, Springer (pp 337–345)

  21. Mota Gomes A (2006) A problemática da Geologia e dos Recursos Hídricos na Ilha do Fogo. Relatório inédito, Praia

    Google Scholar 

  22. Olehowski C, Naumann S, Fischer D, Siegmund A (2008) Geoecological spatial pattern analysis of the island of Fogo (Cape Verde). Glob Planet Change 64:188–197

    Article  Google Scholar 

  23. Madeira J, da Silveira BA (2005) Geomorphic and structural analysis of the Fogo Island Volcano (Cape Verde). In: Abstract volume of SAL2005 international workshop on ocean island volcanism, Sal, Cape Verde

  24. Madeira J, Munhá J, Tassinari CGC, Mata J, da Silveira BA, Martins S (2005) K/Ar ages of carbonatites from the island of Fogo (Cape Verde). In: Actas da XIV Semana da geoquímica e VII Congresso de geoquímica dos países de língua Portuguesa, pp 475–478

  25. Torres PC, Madeira J, Silva LC, da Silveira BA, Serralheiro A, Mota Gomes A (1998) Carta geológica da ilha do Fogo (República de Cabo Verde). In: Erupções históricas e formações enquadrantes. LATTEX, Departamento de Geologia da Fac. de Ciências da Univ. de Lisboa, Escala, pp 1–25000

  26. Darnley AG (1990) International geochemical mapping a new global projet. J Geochem Explor 391(1/2):1–14

    Article  Google Scholar 

  27. Darnley AG, Björklund A, Bölviken B, Gustavsson N, Koval PV, Plant JA, Steenfelt A, Tauchid M, Xuejing X (1995) A global geochemical database for environmental and resource management. In: Recommendations for international geochemical mapping final report of IGCP project 259. UNESCO Publishing

  28. Govindaraju K (1994) Compilation of working values and sample description for 383 geostandards. Geostand Newsl 18:1–158

    Article  CAS  Google Scholar 

  29. Marques R, Prudêncio MI, Freitas MC, Dias MI, Rocha F (2017) Chemical element accumulation in tree bark grown in volcanic soils of Cape Verde—a first biomonitoring of Fogo Island. Environ Sci Pollut Res 24(13):11978–11990

    Article  CAS  Google Scholar 

  30. Prudêncio MI, Roldán C, Dias MI, Marques R, Eixea A, Villaverde V (2016) A micro-invasive approach using INAA for new insights into Palaeolithic flint archaeological artefacts. J Radioanal Nucl Chem 308:195–203

    Article  Google Scholar 

  31. Sanjurjo-Sánchez J, Montero Fenollós JL, Prudêncio MI, Barrientos V, Marques R, Dias MI (2016) Geochemical study of beveled rim bowls from the Middle Syrian Euphrates sites. J Archaeol Sci Rep 7:808–818

    Google Scholar 

  32. Richter D, Zink A, Przegietka K, Cardoso GO, Gouveia MA, Prudêncio MI (2003) Source calibrations and blind test results from the new Luminescence Dating Laboratory at the Instituto Tecnológico e Nuclear, Sacavém, Portugal. Anc TL 21(1):1–7

    Google Scholar 

  33. Burbidge CI, Trindade MJ, Cardoso GJO, Dias MI, Oosterbeek L, Cruz A, Scarre C, Cura P, Caron L, Prudêncio MI, Gouveia A, Franco D, Marques R (2014) Luminescence dating and associated analyses in transition landscapes of the Alto Ribatejo, Central Portugal. Quat Geochronol 20:65–77

    Article  Google Scholar 

  34. Rodrigues AL, Dias MI, Valera AC, Rocha F, Prudêncio MI, Marques R, Cardoso G, Russo R (2019) Geochemistry, luminescence and innovative dose rate determination of a Chalcolithic calcite-rich negative feature. J Archaeol Sci Rep 26:101887

    Google Scholar 

  35. Erramli H (1986) Dosimetry techniques applied to thermoluminescent age estimation. Clermont-Ferrand-2 Univ., 63-Aubiere (France). Lab. de Physique Corpusculaire

  36. Aitken MJ (1985) Thermoluminescence dating: past progress and future trends. Nucl Tracks Radiat Meas 10(1–2):3–6

    Article  Google Scholar 

  37. Pérez-Garrido C (2020) eM-Age (excel macro for age calculation), a new application for luminescence age calculation based on Dose Rate and Age Calculator (DRAC) and analyst. Anc TL 38:1–4

  38. Aitken MJ (1998) An introduction to optical dating: the dating of quaternary sediments by the use of photon-stimulated luminescence. Oxford Science Publications, Oxford, p 267

    Google Scholar 

  39. Guérin G, Mercier N, Nathan R, Adamiec G, Lefrais Y (2012) On the use of infinite matrix assumption and associated concepts: a critical review. Radiat Meas 47(9):778–785

    Article  Google Scholar 

  40. Mejdahl V (1987) Internal radioactivity in quartz and feldspar grains. Anc TL 5:10–17

    Google Scholar 

  41. Rudnick RL, Gao S (2003) Composition of the continental crust. In: Rudnick RL (ed) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 1–64

    Google Scholar 

  42. Marques R, Prudêncio MI, Dias MI, Russo D, Marques JG, Ruiz F, Abad M, Izquierdo T, González-Regalado ML, Rocha F (2020) Paleoweathering of intrusive carbonatites (4.5 Ma) from Fogo Island, Cape Verde—mineralogy and geochemistry. CATENA 194:104778

    Article  CAS  Google Scholar 

  43. Kogarko LN, Sorokhtina NV, Kononkova NN, Klimovich IV (2013) Uranium and thorium in carbonatitic minerals from the Guli Massif, Polar Siberia. Geochem Int 51(10):767–776

    Article  CAS  Google Scholar 

  44. Neves MO, Figueiredo VR, Abreu MM (2012) Transfer of U, Al and Mn in the water–soil–plant (Solanum tuberosum L.) system near a former uranium mining area (Cunha Baixa, Portugal) and implications to human health. Sci Total Environ 416:156–163

    Article  CAS  Google Scholar 

  45. Marques R, Prudêncio MI, Abreu MM, Russo D, Marques JG, Rocha F (2019) Chemical characterization of vines grown in incipient volcanic soils of Fogo Island (Cape Verde). Environ Monit Assess 191:128

    Article  Google Scholar 

  46. National Council on Radiation Protection and Measurements (NCRP) (1987) Exposure of the population in the United States and Canada from Natural Background Radiation, NCRP report no. 94, Maryland

Download references

Acknowledgements

Grateful acknowledgments are made to the Laboratory of Nuclear Engineering (LEN) and to the staff of the Portuguese Research Reactor (RPI) of CTN/IST for their assistance with the neutron irradiations. Rosa Marques acknowledge Dr. Christopher Burbidge for his guidance during her Ph.D. work. Research funded by Fundação para a Ciência e a Tecnologia (FCT, Portugal) through the projects UIDB/04035/2020, UIDB/04349/2020, and post-doctoral grant SFRH/BPD/114986/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Marques.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, R., Prudêncio, M.I., Russo, D. et al. Evaluation of naturally occurring radionuclides (K, Th and U) in volcanic soils from Fogo Island, Cape Verde. J Radioanal Nucl Chem 330, 347–355 (2021). https://doi.org/10.1007/s10967-021-07959-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07959-7

Keywords

Navigation