Skip to main content
Log in

Exploitation of Aspergillus flavus synthesized copper oxide nanoparticles as a novel medical agent

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This study was designed to biosynthesize Aspergillus flavus copper oxide NPs (AFCuONPs) using extracellular fungous filtrate technique and evaluating its medical importance. AFCuONPs were successfully biosynthesized with average size of 32.4 nm and zeta potential of – 36 mV. They were fully characterized using FT-IR, UV–Vis spectrophotometry, and TEM. AFCuONPs cytotoxicity and bactericidal activity were evaluated against different cell lines and pathogenic bacteria, respectively. [99mTc]Tc-AFCuONPs were radiosynthesized with high radiolabeling yield (93 ± 0.85%). In vivo biodistribution of [99mTc]Tc-AFCuONPs in tumor-bearing mice model showed high tumor uptake. These results introduce AFCuONPs as a promising medical agent.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Huang J et al (2015) Bio-inspired synthesis of metal nanomaterials and applications. Chem Soc Rev 44(17):6330–6374

    Article  CAS  PubMed  Google Scholar 

  2. Philip D (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E 42(5):1417–1424

    Article  CAS  Google Scholar 

  3. Husseiny M et al (2007) Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta Part A Mol Biomol Spectrosc 67(3–4):1003–1006

    Article  CAS  Google Scholar 

  4. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1–4):132–140

    Article  CAS  Google Scholar 

  5. Castro-Longoria E et al (2012) Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J Microbiol Biotechnol 22(7):1000–1004

    Article  CAS  PubMed  Google Scholar 

  6. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf, B 83(1):42–48

    Article  CAS  Google Scholar 

  7. Ahmad A et al (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14(7):824

    Article  CAS  Google Scholar 

  8. Boroumand Moghaddam A et al (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20(9):16540–16565

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rai M et al (2013) Potential role of biological systems in formation of nanoparticles: mechanism of synthesis and biomedical applications. Curr Nanosci 9(6):576–587

    Article  CAS  Google Scholar 

  10. Yang L, Lübeck M, Lübeck PS (2017) Aspergillus as a versatile cell factory for organic acid production. Fungal Biol Rev 31(1):33–49

    Article  Google Scholar 

  11. Nielsen KF et al (2009) Review of secondary metabolites and mycotoxins from the Aspergillus niger group. Anal Bioanal Chem 395(5):1225–1242

    Article  CAS  PubMed  Google Scholar 

  12. Ali M et al (2017) Biological activities of the Alkaloid Quinazoline extracted from Aspergillus nomius. Egypt J Bot 57(3):565–582

    Article  Google Scholar 

  13. El-Sayed AS et al (2019) Production and Characterization of Taxol as Anticancer Agent from Aspergillus terreus. J Pure Appl Microbiol 13(4):2055–2063

    Article  CAS  Google Scholar 

  14. Martirosyan A et al (2010) Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance. BMC Cancer 10(1):103

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang X-m et al (2010) Mechanism of inhibiting proliferation by xanthocillin X dimethyl in tumor cells. Chin J New Drugs. 19(10):832–836

    Google Scholar 

  16. Vigushin D et al (2004) Gliotoxin is a dual inhibitor of farnesyltransferase and geranylgeranyltransferase I with antitumor activity against breast cancer in vivo. Med Oncol 21(1):21–30

    Article  CAS  PubMed  Google Scholar 

  17. Varga J et al (2007) Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud Mycol 59:89–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Santini C et al (2014) Advances in copper complexes as anticancer agents. Chem Rev 114(1):815–862

    Article  CAS  PubMed  Google Scholar 

  19. Mendoza-Diaz G et al (1991) Synthesis, characterization and biological activity of some mixed complexes of Cu (II) and Zn (II) with antibiotics of the nalidixic acid family and N-N ligands. J Inorg Biochem 43(2–3):640

    Article  Google Scholar 

  20. Honary S et al (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmanii. Dig J Nanomater Bios 7(3):999–1005

    Google Scholar 

  21. Liu H et al (2016) Detention of copper by sulfur nanoparticles inhibits the proliferation of A375 malignant melanoma and MCF-7 breast cancer cells. Biochem Biophys Res Commun 477(4):1031–1037

    Article  CAS  PubMed  Google Scholar 

  22. Laha D et al (1840) (2014) Interplay between autophagy and apoptosis mediated by copper oxide nanoparticles in human breast cancer cells MCF7. Biochim Biophys Acta General Subj 1:1–9

    Google Scholar 

  23. hamer NA, Barakat NT (2019). Cytotoxic activity of green synthesis copper oxide nanoparticles using Cordia myxa L. aqueous extract on some breast cancer cell lines. In: Journal of Physics: conference series. IOP Publishing.

  24. Aruoma OI et al (1991) Copper-ion-dependent damage to the bases in DNA in the presence of hydrogen peroxide. Biochem J 273(3):601–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeronsia JE et al (2016) In vitro antibacterial and anticancer activity of copper oxide nanostructures in human breast cancer Michigan Cancer Foundation-7 cells. J Med Sci 36(4):145

    Article  Google Scholar 

  26. Preeth DR et al (2019) Green synthesis of copper oxide nanoparticles using sinapic acid: an underpinning step towards antiangiogenic therapy for breast cancer. J Biol Inorg Chem 24(5):633–645

    Article  Google Scholar 

  27. Wang Z et al (2012) CuO nanoparticle interaction with human epithelial cells: cellular uptake, location, export, and genotoxicity. Chem Res Toxicol 25(7):1512–1521

    Article  CAS  PubMed  Google Scholar 

  28. Siddiqui MA et al (2013) Copper oxide nanoparticles induced mitochondria mediated apoptosis in human hepatocarcinoma cells. PLoS ONE 8(8):e69534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Halevas E, Pantazaki A (2018) Copper nanoparticles as therapeutic anticancer agents. Nanomed Nanotechnol J 2(1):119–139

    Google Scholar 

  30. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227

    Article  CAS  Google Scholar 

  31. Giannousi K et al (2014) Selective synthesis of Cu2O and Cu/Cu2O NPs: antifungal activity to yeast Saccharomyces cerevisiae and DNA interaction. Inorg Chem 53(18):9657–9666

    Article  CAS  PubMed  Google Scholar 

  32. Ficai, A. and A.M. Grumezescu, Nanostructures for antimicrobial therapy. 2017: Elsevier.

  33. Jahangirian H et al (2017) A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine. Int J Nanomed 12:2957

    Article  CAS  Google Scholar 

  34. Usha, R., et al., Synthesis of metal oxide nano particles by Streptomyces sp. for development of antimicrobial textiles. Global J Biotechnol Biochem, 2010. 5(3): p. 153–160.

  35. V Singh, A., et al., Biological synthesis of copper oxide nano particles using Escherichia coli. Current Nanoscience, 2010. 6(4): p. 365–369.

  36. Bauer AW et al (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

    Article  CAS  Google Scholar 

  37. Gomha S et al (2016) Synthesis and anticancer activity of arylazothiazoles and 1,3,4-thiadiazoles using chitosan-grafted-poly(4-vinylpyridine) as a novel copolymer basic catalyst. Chem Heterocycl Compd 51:1–9

    Google Scholar 

  38. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  39. Varacallo M, Mair S (2019) StatPearls [Internet]. StatPearls Publishing. Treasure Island (FL): Jun, 2019. 4.

  40. Papagiannopoulou D (2017) Technetium-99m radiochemistry for pharmaceutical applications. J Labelled Compd Radiopharm 60(11):502–520

    Article  CAS  Google Scholar 

  41. Sakr T, Motaleb M, Zaghary W (2015) Synthesis, radioiodination and in vivo evaluation of ethyl 1, 4-dihydro-7-iodo-4-oxoquinoline-3-carboxylate as a potential pulmonary perfusion scintigraphic radiopharmaceutical. J Radioanal Nucl Chem 303(1):399–406

    Article  CAS  Google Scholar 

  42. Hall AV et al (1998) Evaluation of the efficacy of 99mTc-Infecton, a novel agent for detecting sites of infection. J Clin Pathol 51:215–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Motaleb M, Sakr T (2011) Synthesis and preclinical pharmacological evaluation of 99mTc-TEDP as a novel bone imaging agent. J Labelled Compd Radiopharm 54:597–601

    Article  CAS  Google Scholar 

  44. Sakr TM et al (2020) 99mTc-gallic-gold nanoparticles as a new imaging platform for tumor targeting. Appl Radiat Isot 164:109269

    Article  CAS  PubMed  Google Scholar 

  45. Korany M et al (2020) Exhibiting the Diagnostic Face of Selenium Nanoparticles as a Radio-platform for Tumor Imaging. Bioorg Chem 100:103910

    Article  CAS  PubMed  Google Scholar 

  46. Mohamed KO et al (2017) Design, synthesis and biological evaluation of some novel sulfonamide derivatives as apoptosis inducers. Eur J Med Chem 135:424–433

    Article  CAS  PubMed  Google Scholar 

  47. Sakr TM, Swidan MM et al (2015) Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging. J Radioanaly Nuclear Chem 303(1):531–539

    Article  Google Scholar 

  48. Sakr TM et al (2018) I-131 doping of silver nanoparticles platform for tumor theranosis guided drug delivery. Eur J Pharm Sci 122:239–245

    Article  CAS  PubMed  Google Scholar 

  49. Swidan MM et al (2015) Preliminary assessment of radioiodinated fenoterol and reproterol as potential scintigraphic agents for lung imaging. J Radioanal Nucl Chem 303:531–539

    Article  CAS  Google Scholar 

  50. Ghorbani HR, Mehr FP, Poor AK (2015) Extracellular synthesis of copper nanoparticles using culture supernatants of Salmonella typhimurium. Orient J Chem 31(1):527–529

    Article  Google Scholar 

  51. Honary S et al (2012) Green synthesis of copper oxide nanoparticles using Penicillium aurantiogriseum, Penicillium citrinum and Penicillium waksmani. Dig J Nanomater Biostruct 7:999–1005

  52. Lisiecki I, Billoudet F, Pileni MP (1996) Control of the shape and the size of copper metallic particles. J Phys Chem 100(10):4160–4166

    Article  CAS  Google Scholar 

  53. Nagajyothi PC et al (2017) Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 10(2):215–225

    Article  CAS  Google Scholar 

  54. Cuevas R et al (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white-rot fungus from Chilean forests. J Nanomater 2015:789089

  55. Radović M et al (2015) Preparation and in vivo evaluation of multifunctional 90Y-labeled magnetic nanoparticles designed for cancer therapy. J Biomed Mater Res, Part A 103(1):126–134

    Article  Google Scholar 

  56. Swidan MM et al (2019) Iron oxide nanoparticulate system as a cornerstone in the effective delivery of Tc-99 m radionuclide: a potential molecular imaging probe for tumor diagnosis. DARU J Pharm Sci 27(1):49–58

    Article  CAS  Google Scholar 

  57. Ahmad A et al (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41):12108–12109

    Article  CAS  PubMed  Google Scholar 

  58. Ghareib M et al (2019) Biosynthesis of copper oxide nanoparticles using the preformed biomass of Aspergillus fumigatus and their antibacterial and photocatalytic activities. Dig J Nanomater Biostruct. 14(2):291–303

    Google Scholar 

  59. Saravanakumar K et al (2019) Biosynthesis and characterization of copper oxide nanoparticles from indigenous fungi and its effect of photothermolysis on human lung carcinoma. J Photochem Photobiol, B 190:103–109

    Article  CAS  Google Scholar 

  60. Dhoble SM, Kulkarni NS (2016) Biosynthesis and characterization of different metal nanoparticles by using fungi. Sch Acad J Biosci 4(11):1022–1031

    CAS  Google Scholar 

  61. Padil VVT, Černík M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomed 8:889

    Google Scholar 

  62. Vanathi P, Rajiv P, Sivaraj R (2016) Synthesis and characterization of Eichhornia-mediated copper oxide nanoparticles and assessing their antifungal activity against plant pathogens. Bull Mater Sci 39(5):1165–1170

    Article  CAS  Google Scholar 

  63. George M, Britto S (2014) Biosynthesis characterization antifungal and antioxidant activity of copper oxide nanoparticles (CONPS). Eur J Biomed Pharma Sci 1(2):199–210

    CAS  Google Scholar 

  64. Heinlaan M et al (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316

    Article  CAS  PubMed  Google Scholar 

  65. Yugandhar P et al (2017) Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity. Appl Nanosci 7(7):417–427

    Article  CAS  Google Scholar 

  66. Ren G et al (2009) Characterisation of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33(6):587–590

    Article  CAS  PubMed  Google Scholar 

  67. Rehana D et al (2017) Evaluation of antioxidant and anticancer activity of copper oxide nanoparticles synthesized using medicinally important plant extracts. Biomed Pharmacother 89:1067–1077

    Article  CAS  PubMed  Google Scholar 

  68. Ramaswamy SVP, Narendhran S, Sivaraj R (2016) Potentiating effect of ecofriendly synthesis of copper oxide nanoparticles using brown alga: antimicrobial and anticancer activities. Bull Mater Sci 39(2):361–364

    Article  CAS  Google Scholar 

  69. Sivaraj R et al (2014) Biosynthesis and characterization of Acalypha indica mediated copper oxide nanoparticles and evaluation of its antimicrobial and anticancer activity. Spectrochim Acta Part A Mol Biomol Spectrosc 129:255–258

    Article  CAS  Google Scholar 

  70. Psimadas D et al (2013) Radiolabeling approaches of nanoparticles with 99mTc. Contrast Media Mol Imaging 8(4):333–339

    Article  CAS  PubMed  Google Scholar 

  71. Richardson VJ, Jeyasingh K, Jewkes RF (1977) Properties of (99” rcj technetium-labelled liposomes in normal and tumour-bearing rats. Liver. 24:5.33

    Google Scholar 

  72. Saha GB (2018) Radiopharmaceuticals and general methods of radiolabeling, in. fundamentals of nuclear pharmacy. Springer, Berlin, pp 93–121

    Chapter  Google Scholar 

  73. Geskovski N et al (2013) Comparative biodistribution studies of technetium-99 m radiolabeled amphiphilic nanoparticles using three different reducing agents during the labeling procedure. J Labelled Compd Radiopharm 56(14):689–695

    Article  CAS  Google Scholar 

  74. Essa BM et al (2020) 99mTc-citrate-gold nanoparticles as a tumor tracer: synthesis, characterization, radiolabeling and in-vivo studies. Radiochim Acta 108(10):809–819

    Article  CAS  Google Scholar 

  75. Metselaar JM et al (2003) A novel family of L-amino acid-based biodegradable polymer—lipid conjugates for the development of long-circulating liposomes with effective drug-targeting capacity. Bioconjug Chem 14(6):1156–1164

    Article  CAS  PubMed  Google Scholar 

  76. Haidar ZS, Hamdy RC, Tabrizian M (2008) Protein release kinetics for core–shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials 29(9):1207–1215

    Article  CAS  PubMed  Google Scholar 

  77. Peer D et al (2008) Systemic leukocyte-directed siRNA delivery revealing cyclin D1 as an anti-inflammatory target. Science 319(5863):627–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Li S-D, Huang L (2009) Nanoparticles evading the reticuloendothelial system role of the supported bilayer. Biochim Biophys Acta Biomembr 1788(10):2259–2266

    Article  CAS  Google Scholar 

  79. El-Ghareb WI et al (2020) 99mTc-Doxorubicin-loaded gallic acid-gold nanoparticles (99mTc-DOX-loaded GA-Au NPs) as a multifunctional theranostic agent. Int J Pharm 586:119514

    Article  CAS  PubMed  Google Scholar 

  80. Moghimi SM, Szebeni J (2003) Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res 42(6):463–478

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Prof. Tamer M. Sakr expresses his grateful appreciation and thanks for International Atomic Energy Authority (IAEA) for international collaboration and funding this work under CRP No. F22064.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamer M. Sakr.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, M.A., EL-Aasser, M.M., Ayoub, S.M. et al. Exploitation of Aspergillus flavus synthesized copper oxide nanoparticles as a novel medical agent. J Radioanal Nucl Chem 328, 299–313 (2021). https://doi.org/10.1007/s10967-021-07637-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-07637-8

Keywords

Navigation