Skip to main content
Log in

Effect of pH on the formation of U(VI) colloidal particles in a natural groundwater

Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

U(VI) was found to form intrinsic colloids in the natural groundwater. Fluorescence spectra, TEM, SEM techniques and thermodynamic calculation were used to identify the species of U(VI) and characterize the intrinsic uranium colloidal particles in the groundwater. The effect of pH on the formation of U(VI) colloidal particles was studied. It was found that under near-neutral and strong alkaline conditions, several elements, mainly Ca, Na and Si were responsible for the formation of intrinsic U(VI) colloid, and under weak alkaline conditions, U(VI) colloidal particles were not formed due to the formation of calcium uranyl carbonate complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. IAEA (2009) Classification of radioactive waste: safety guide. IAEA Publishing Section, Vienna, Austria

    Google Scholar 

  2. Gavrilescu M, Pavel LV, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163(2–3):475–510

    Article  CAS  PubMed  Google Scholar 

  3. Dozol M, Hagemann R (1993) Radionuclide migration in groundwaters: review of the behaviour of actinides (technical report). Pure Appl Chem 65(5):1081–1102

    Article  CAS  Google Scholar 

  4. MiroslawJonasz GRF (2007) The particle size distribution. Light scattering by particles in water, vol 5. Academic Press, Cambridge

    Google Scholar 

  5. Utsunomiya S, Kersting AB, Ewing RC (2009) Groundwater nanoparticles in the far-field at the nevada test site: mechanism for radionuclide transport. Environ Sci Technol 43(5):1293–1298

    Article  CAS  PubMed  Google Scholar 

  6. Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in ground water at the Nevada test site. Nature 397(6714):56

    Article  CAS  Google Scholar 

  7. Walther C, Denecke MA (2013) Actinide colloids and particles of environmental concern. Chem Rev 113(2):995–1015

    Article  CAS  PubMed  Google Scholar 

  8. Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314(5799):638–641

    Article  CAS  PubMed  Google Scholar 

  9. Kretzschmar R, Schäfer T (2005) Metal retention and transport on colloidal particles in the environment. Elements 1(4):205–210

    Article  CAS  Google Scholar 

  10. Novikov AP, Vlasova IE, Safonov AV, Ermolaev VM, Zakharova EV, Kalmykov SN (2018) Speciation of actinides in groundwater samples collected near deep nuclear waste repositories. J Environ Radioact 192:334–341

    Article  CAS  PubMed  Google Scholar 

  11. Kim JI (1991) Actinide colloid generation in groundwater. Radiochim Acta 52(1):71–82

    Article  Google Scholar 

  12. Knopp R, Neck V, Kim JI (1999) Solubility, hydrolysis and colloid formation of plutonium (IV). Radiochim Acta 86(3–4):101–108

    Article  CAS  Google Scholar 

  13. Neck V, Kim JI, Seidel BS, Marquardt CM, Dardenne K, Jensen MP, Hauser W (2001) A spectroscopic study of the hydrolysis, colloid formation and solubility of Np(IV). Radiochim Acta 89(7):439–446

    Article  CAS  Google Scholar 

  14. Li J, Zhang Y (2012) Remediation technology for the uranium contaminated environment: a review. Proc Environ Sci 13:1609–1615

    Article  CAS  Google Scholar 

  15. Selvakumar R, Ramadoss G, Mridula PM, Rajendran K, Thavamani P, Ravi N, Megharaj M (2018) Challenges and complexities in remediation of uranium contaminated soils: a review. J Environ Radioact 192:592–603

    Article  CAS  PubMed  Google Scholar 

  16. Marques Fernandes M, Baeyens B, Dähn R, Scheinost AC, Bradbury MH (2012) U(VI) sorption on montmorillonite in the absence and presence of carbonate: a macroscopic and microscopic study. Geochim Cosmochim Acta 93:262–277

    Article  CAS  Google Scholar 

  17. Kumar A, Tripathi RM, Rout S, Mishra MK, Ravi PM, Ghosh AK (2014) Characterization of groundwater composition in Punjab state with special emphasis on uranium content, speciation and mobility. Radiochim Acta 102(3):239–254

    Article  CAS  Google Scholar 

  18. Yang J, Ge M, Jin Q, Chen Z, Guo Z (2019) Co-transport of U(VI), humic acid and colloidal gibbsite in water-saturated porous media. Chemosphere 231:405–414

    Article  CAS  PubMed  Google Scholar 

  19. Du L, Wang P, Li X, Tan Z (2019) Effect of attapulgite colloids on uranium migration in quartz column. Appl Geochem 100:363–370

    Article  CAS  Google Scholar 

  20. Artinger R, Rabung T, Kim JI, Sachs S, Schmeide K, Heise KH, Bernhard G, Nitsche H (2002) Humic colloid-borne migration of uranium in sand columns. J Contam Hydrol 58(1–2):1–12

    Article  CAS  PubMed  Google Scholar 

  21. Ge M, Wang D, Yang J, Jin Q, Chen Z, Wu W, Guo Z (2018) Co-transport of U(VI) and akaganeite colloids in water-saturated porous media: role of U(VI) concentration, pH and ionic strength. Water Res 147:350–361

    Article  CAS  PubMed  Google Scholar 

  22. Bots P, Morris K, Hibberd R, Law GT, Mosselmans JF, Brown AP, Doutch J, Smith AJ, Shaw S (2014) Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal. Langmuir 30(48):14396–14405

    Article  CAS  PubMed  Google Scholar 

  23. Kanematsu M, Perdrial N, Um W, Chorover J, O’Day PA (2014) Influence of phosphate and silica on U(VI) precipitation from acidic and neutralized wastewaters. Environ Sci Technol 48(11):6097–6106

    Article  CAS  PubMed  Google Scholar 

  24. Priyadarshini N, Sampath M, Kumar S, Mudali UK, Natarajan R (2013) A combined spectroscopic and light scattering study of hydrolysis of uranium(VI) leading to colloid formation in aqueous solutions. J Radioanal Nucl Chem 298(3):1923–1931

    Article  CAS  Google Scholar 

  25. Gorman-Lewis D, Burns PC, Fein JB (2008) Review of uranyl mineral solubility measurements. J Chem Thermodyn 40(3):335–352

    Article  CAS  Google Scholar 

  26. Wang K, Zhao Y, Yang Z, Lin Z, Tan Z, Du L, Liu C (2018) Concentration and characterization of groundwater colloids from the northwest edge of Sichuan basin, China. Colloids Surf A 537:85–91

    Article  CAS  Google Scholar 

  27. Shi Y, He J, Yang X, Zhou W, Wang J, Li X, Liu C (2019) Sorption of U(VI) onto natural soils and different mineral compositions: the batch method and spectroscopy analysis. J Environ Radioact 203:163–171

    Article  CAS  PubMed  Google Scholar 

  28. Zheng Z, Kang M, Wang C, Liu C, Grambow B, Duro L, Suzuki-Muresan T (2014) Influence of gamma irradiation on uranium determination by Arsenazo III in the presence of Fe(II)/Fe(III). Chemosphere 107:373–378

    Article  CAS  PubMed  Google Scholar 

  29. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey, New York

    Google Scholar 

  30. Kinniburgh D, Cooper D (2011) PhreePlot: creating graphical output with PHREEQC. http://www.phreeplot.org

  31. Song Y, Qian F, Gao Y, Huang X, Wu J, Yu H (2015) PHREEQC program-based simulation of magnesium phosphates crystallization for phosphorus recovery. Environ Earth Sci 73(9):5075–5084

    Article  CAS  Google Scholar 

  32. Idris AN, Aris AZ, Praveena SM, Suratman S, Tawnie I, Samsuddin MKN (2016) Hydrogeochemistry characteristics in Kampong Salang, Tioman Island, Pahang, Malaysia. IOP Conf Ser Mater Sci Eng 136(1):012065

    Article  Google Scholar 

  33. Richter C, Müller K, Drobot B, Steudtner R, Großmann K, Stockmann M, Brendler V (2016) Macroscopic and spectroscopic characterization of uranium(VI) sorption onto orthoclase and muscovite and the influence of competing Ca 2+. Geochim Cosmochim Acta 189:143–157

    Article  CAS  Google Scholar 

  34. Thoenen T, Hummel W, Berner U, Curti E (2014) PSI/Nagra chemical thermodynamic database 12/07. https://www.psi.ch/en/les/database

  35. Hummel W, Berner U, Curti E, Pearson F, Thoenen T (2002) Nagra/PSI chemical thermodynamic data base 01/01. Nagra Technical Report NTB 02-16, Nagra, Wettingen, Switzerland Parkland, Florida

  36. Alwan K, Williams PA (1980) The aqueous chemistry of uranium minerals. Part 2. Minerals of the Liebigite Group. Miner Mag 43:665–667

    Article  CAS  Google Scholar 

  37. Weber A, Kassahun A (2017) How geochemical modelling helps understanding processes in mine water treatment plants—examples from former uranium mining sites in Germany. Paper presented at the 13th IMWA congress

  38. Langelier WF (1936) The analytical control of anti-corrosion water treatment. J Am Water Works Assoc 28(10):1500–1521

    Article  CAS  Google Scholar 

  39. Langelier WF (1946) Chemical equilibria in water treatment. Am Water Works Assoc 38(2):169–178

    Article  CAS  Google Scholar 

  40. Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations (No. 6-A43). US Geological Survey

  41. Bhattacharjee S (2016) DLS and zeta potential—What they are and what they are not? J Control Release 235:337–351

    Article  CAS  Google Scholar 

  42. Patel VR, Agrawal YK (2011) Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res 2(2):81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chernorukov NG, Kortikov VE (2001) Na [HSiUO6]· H2O: synthesis, structure, and properties. Radiochemistry 43(3):229–232

    Article  CAS  Google Scholar 

  44. Saleh AS, Lee JY, Jo Y, Yun JI (2018) Uranium(VI) sorption complexes on silica in the presence of calcium and carbonate. J Environ Radioact 182:63–69

    Article  CAS  PubMed  Google Scholar 

  45. Baumann N, Arnold T, Lonschinski M (2012) TRLFS study on the speciation of uranium in seepage water and pore water of heavy metal contaminated soil. J Radioanal Nucl Chem 291(3):673–679

    Article  CAS  PubMed  Google Scholar 

  46. Bernhard G, Geipel G, Brendler V, Nitsche H (1996) Speciation of uranium in seepage waters of a mine tailing pile studied by time-resolved laser-induced fluorescence spectroscopy (TRLFS). Radiochim Acta 74:87–91

    Article  CAS  Google Scholar 

  47. Lee J-Y, Vespa M, Gaona X, Dardenne K, Rothe J, Rabung T, Altmaier M, Yun J-I (2017) Formation, stability and structural characterization of ternary MgUO2(CO3)32− and Mg2UO2(CO3)3(aq) complexes. Radiochim Acta 105(3):171–185

    Article  CAS  Google Scholar 

  48. Baik MH, Jung EC, Jeong J (2015) Determination of uranium concentration and speciation in natural granitic groundwater using TRLFS. J Radioanal Nucl Chem 305(2):589–598

    Article  CAS  Google Scholar 

  49. Amayri S, Arnold T, Reich T, Foerstendorf H, Geipel G, Bernhard G, Massanek A (2004) Spectroscopic characterization of the uranium carbonate andersonite Na2Ca[UO2(CO3)3] × 6H2O. Environ Sci Technol 38(22):6032–6036

    Article  CAS  PubMed  Google Scholar 

  50. Arnold T, Utsunomiya S, Geipel G, Ewing RC, Baumann N, Brendler V (2006) Adsorbed U(VI) surface species on muscovite identified by laser fluorescence spectroscopy and transmission electron microscopy. Environ Sci Technol 40(15):4646–4652

    Article  CAS  PubMed  Google Scholar 

  51. Grossmann K, Arnold T, Ikeda-Ohno A, Steudtner R, Geipel G, Bernhard G (2009) Fluorescence properties of a uranyl(V)-carbonate species [U(V)O(2)(CO(3))(3)](5-) at low temperature. Spectrochim Acta Part A Mol Biomol Spectrosc 72(2):449–453

    Article  Google Scholar 

  52. Martínez-Torrents A, Meca S, Baumann N, Martí V, Giménez J, de Pablo J, Casas I (2013) Uranium speciation studies at alkaline pH and in the presence of hydrogen peroxide using time-resolved laser-induced fluorescence spectroscopy. Polyhedron 55:92–101

    Article  Google Scholar 

  53. Bernhard G, Geipel G, Brendler V, Nitsche H (1998) Uranium speciation in waters of different uranium mining areas. J Alloys Compd 271:201–205

    Article  Google Scholar 

  54. Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Uranyl(VI) carbonate complex formation: validation of the Ca2UO2(CO3)3(aq.) species. Radiochim Acta 89(8):511–518

    Article  CAS  Google Scholar 

  55. Lee JY, Yun JI (2013) Formation of ternary CaUO2(CO3)3(2-) and Ca2UO2(CO3)3(aq) complexes under neutral to weakly alkaline conditions. Dalton Trans 42(27):9862–9869

    Article  CAS  PubMed  Google Scholar 

  56. Dong W, Brooks SC (2006) Determination of the formation constants of ternary complexes of uranyl and carbonate with alkaline earth metals (Mg2+, Ca2+, Sr2+, and Ba2+) using anion exchange method. Environ Sci Technol 40(15):4689–4695

    Article  CAS  PubMed  Google Scholar 

  57. Kalmykov SN, Choppin GR (2000) Mixed Ca2+/UO22+/CO32- complex formation at different ionic strengths. Radiochim Acta 88(9–11):603–606

    Article  CAS  Google Scholar 

  58. Brandy D, Stewart MAM, Fendorf S (2010) Impact of Uranyl–Calcium–Carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments. Environ Sci Technol 44(3):928–934

    Article  Google Scholar 

  59. Dong W, Ball WP, Liu C, Wang Z, Stone AT, Bai J, Zachara JM (2005) Influence of calcite and dissolved calcium on uranium(VI) sorption to a Hanford subsurface sediment. Environ Sci Technol 39(20):7949–7955

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC 11475008, U1530112, U1730245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 457 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zhou, W., Wang, J. et al. Effect of pH on the formation of U(VI) colloidal particles in a natural groundwater. J Radioanal Nucl Chem 328, 785–794 (2021). https://doi.org/10.1007/s10967-020-07591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07591-x

Keywords

Navigation