Skip to main content
Log in

Research on radon exhalation characteristics of uranium tailings with cover materials under the coupling load of low-frequency vibration and seepage gradient

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, radon (222Rn) measurements were taken at compacted uranium tailings with cover materials by a self-developed coupling testing system under different low-frequency vibration loads and gas seepage rates. The maximum measured value appears at 0.723 Bq m−2 s−1, which is close to the upper limit value of national standard of China (0.74 Bq m−2 s−1). A vibration load significantly damages the compacted uranium tailings sample structure, resulting in a marked increase in the porosity of the porous media thus forming a channel for radon migration. The results presented here may provide a workable approach for simulating geological dynamic load conditions for radon exhalation studies on uranium tailings impoundment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. World Health Organization (2010) WHO handbook on indoor radon a public health perspective

  2. IAEA Publications (2013) Measurement and calculation of radon releases from uranium mill tailings

  3. Landa ER (1987) Radium-226 contents and rn emanation coefficients of particle-size fractions of alkaline, acid and mixed u mill tailings. Health Phys 52:303–310. https://doi.org/10.1097/00004032-198703000-00004

    Article  CAS  PubMed  Google Scholar 

  4. Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129:185–204. https://doi.org/10.1016/S0031-9201(01)00292-8

    Article  CAS  Google Scholar 

  5. Hu N, Ding D, Li G et al (2014) Vegetation composition and 226 Ra uptake by native plant species at a uranium mill tailings impoundment in South China. J Environ Radioact 129:100–106. https://doi.org/10.1016/j.jenvrad.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  6. Monkul MM, Yamamuro JA (2011) Influence of silt size and content on liquefaction behavior of sands. Can Geotech J 48:931–942. https://doi.org/10.1139/t11-001

    Article  Google Scholar 

  7. Psarropoulos PN, Tsompanakis Y (2008) Stability of tailings dams under static and seismic loading. Can Geotech J 45:663–675. https://doi.org/10.1139/T08-014

    Article  Google Scholar 

  8. Ferry C, Richon P, Beneito A, Robé MC (2001) Radon exhalation from uranium mill tailings: experimental validation of a 1-D model. J Environ Radioact 54:99–108. https://doi.org/10.1016/S0265-931X(00)00169-7

    Article  CAS  PubMed  Google Scholar 

  9. Sahoo BK, Mayya YS, Sapra BK et al (2010) Radon exhalation studies in an Indian uranium tailings pile. Radiat Meas 45:237–241. https://doi.org/10.1016/j.radmeas.2010.01.008

    Article  CAS  Google Scholar 

  10. Tan K, Liu Z, Xia L et al (2012) The influence of fractal size distribution of covers on radon exhalation from uranium mill tailings. Radiat Meas 47:163–167. https://doi.org/10.1016/j.radmeas.2011.11.010

    Article  CAS  Google Scholar 

  11. Li Y, Tan W, Tan K et al (2018) The effect of laterite density on radon diffusion behavior. Appl Radiat Isot 132:164–169. https://doi.org/10.1016/j.apradiso.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  12. Savovic S (2011) Explicit finite difference solution of the diffusion equation describing the flow of radon through soil. Appl Radiat Isot 69:237–240. https://doi.org/10.1016/j.apradiso.2010.09.007

    Article  CAS  PubMed  Google Scholar 

  13. Sakoda A, Ishimori Y, Hanamoto K et al (2010) Experimental and modeling studies of grain size and moisture content effects on radon emanation. Radiat Meas 45:204–210. https://doi.org/10.1016/j.radmeas.2010.01.010

    Article  CAS  Google Scholar 

  14. Leonardi F, Bonczyk M, Nuccetelli C et al (2018) A study on natural radioactivity and radon exhalation rate in building materials containing norm residues: preliminary results. Constr Build Mater 173:172–179. https://doi.org/10.1016/j.conbuildmat.2018.03.254

    Article  CAS  Google Scholar 

  15. Ye YJ, Dai XT, Ding DX, Zhao YL (2016) Modeling and experimental examination of water level effects on radon exhalation from fragmented uranium ore. J Environ Radioact 165:219–226. https://doi.org/10.1016/j.jenvrad.2016.10.009

    Article  CAS  PubMed  Google Scholar 

  16. Immé G, Catalano R, Mangano G, Morelli D (2014) Radon exhalation measurements for environmental and geophysics study. Radiat Phys Chem 95:349–351. https://doi.org/10.1016/j.radphyschem.2013.02.033

    Article  CAS  Google Scholar 

  17. Vaupotiĉ J, Gregoriĉ A, Kobal I et al (2010) Radon concentration in soil gas and radon exhalation rate at the Ravne fault in NW Slovenia. Nat Hazards Earth Syst Sci 10:895–899. https://doi.org/10.5194/nhess-10-895-2010

    Article  Google Scholar 

  18. Perrier F, Girault F (2012) Measuring effective radium concentration with less than 5 g of rock or soil. J Environ Radioact 113:45–56. https://doi.org/10.1016/j.jenvrad.2012.04.010

    Article  CAS  PubMed  Google Scholar 

  19. ISO 11665e7:2012 (2012) Measurement of radioactivity in the environment-air: radon-222-Part 9: Test methods for exhalation rate of building materials

  20. Zhang L, Lei X, Guo Q et al (2012) Accurate measurement of the radon exhalation rate of building materials using the closed chamber method. J Radiol Prot 32:315–323. https://doi.org/10.1088/0952-4746/32/3/315

    Article  CAS  PubMed  Google Scholar 

  21. Awhida A, Ujić P, Vukanac I et al (2016) Novel method of measurement of radon exhalation from building materials. J Environ Radioact 164:337–343. https://doi.org/10.1016/j.jenvrad.2016.08.009

    Article  CAS  PubMed  Google Scholar 

  22. Hong C, Li X, Zhao G et al (2018) Preparation and multi-properties determination of radium-containing rocklike material. IOP Conf Ser Earth Environ Sci 121:52018. https://doi.org/10.1088/1755-1315/121/5/052018

    Article  Google Scholar 

  23. Feng SY, Wang HQ, Cui Y et al (2019) Monte Carlo method for determining radon diffusion coefficients in porous media. Radiat Meas 126:106130. https://doi.org/10.1016/j.radmeas.2019.106130

    Article  CAS  Google Scholar 

  24. International Atomic Energy Agency (IAEA) (2004) Final report of a co-ordinated research project 2000–2004: The long term stabilization of uranium mill tailings. Vienna

  25. Wang L, Ye Y, Ding D et al (2014) Experimental study on radon seepage migration and exhalation laws in fragmented emanation media. At Energy Sci Technol 48:1718–1724 (In Chinese)

    CAS  Google Scholar 

  26. Planinić J, Radolić V, Vuković B (2004) Radon as an earthquake precursor. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 530:568–574. https://doi.org/10.1016/j.nima.2004.04.209

    Article  CAS  Google Scholar 

  27. Kemski J, Klingel R, Siehl A, Valdivia-Manchego M (2009) From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany. Environ Geol 56:1269–1279. https://doi.org/10.1007/s00254-008-1226-z

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Hunan Province Engineering Technology Research Center of Uranium Tailings Treatment, China, for providing the experimental site and processed samples. And this study was supported by the National Natural Science Foundation of China (Grant No. 11475081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziqi Cai or Qingmin Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Z., Zhang, Q., Li, X. et al. Research on radon exhalation characteristics of uranium tailings with cover materials under the coupling load of low-frequency vibration and seepage gradient. J Radioanal Nucl Chem 327, 359–371 (2021). https://doi.org/10.1007/s10967-020-07478-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07478-x

Keywords

Navigation