Skip to main content
Log in

Ion exchange of Cs+ and Sr2+ by natural clinoptilolite from bi-cationic solutions and XRD control of their structural positioning

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Clinoptilolite from Bulgaria was tested for uptake towards Cs+ and Sr2+ from bi-cationic solutions using batch technique. Contact time and cation concentrations were investigated, revealing minor difference in Cs+ sorption from single and mixed solutions but clear difference in Sr2+ uptake. Kinetic data were fit with pseudo-second-order kinetic model. The Langmuir isotherm model provided best description of equilibrium ion-exchange data [qmax (mg/g) is 122.7 for Cs+ and 21.50 for Sr2+]. Desorption experiments show that cesium and strontium ions are retained strongly by clinoptilolite. Rietveld structure refinement showed that approximately four Cs+ ions were exchanged versus one Sr2+ ion in clinoptilolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(*Data from [28]; **[27])

Fig. 3

(*Data from [28]; **[27])

Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armbruster T (2001) Clinoptilolite-heulandite: applications and basic research. Stud Surf Sci Catal 135:13–27

    Article  Google Scholar 

  2. Environmental consequences of the Chernobyl accident and their remediation: twenty years of experience. Report of the Chernobyl Forum Expert Group ‘Environment’. https://www-pub.iaea.org/mtcd/publications/pdf/pub1239_web.pdf. Accessed 12 Dec 2019

  3. Blandford ED, Ahn J (2012) Examining the nuclear accident at Fukushima Daiichi. Elements 8:189–194

    Article  Google Scholar 

  4. IAEA. Final report of the international mission on remediation of large contaminated areas off-site the Fukushima Dai-ichi NPP. https://reliefweb.int/report/japan/final-report-international-mission-remediation-large-contaminated-areas-site-fukushima. Accessed 12 Dec 2019

  5. Shahwan T, Akar D, Froğlu AE (2005) Physicochemical characterization of the radiation of aqueous Cs+ ions by natural kaolinite and clinoptilolite minerals. J Colloid Interface Sci 285:9–17

    Article  CAS  Google Scholar 

  6. Dyer A, Chimedtsogzol A, Campbell L, Williams C (2006) Uptake of caesium and strontium radioisotopes by natural zeolites from Mongolia. Microporous Mesoporous Mater 95:172–175

    Article  CAS  Google Scholar 

  7. Cortés-Martínez R, Olguín MT, Solache-Ríos M (2010) Cesium sorption by clinoptilolite-rich tuffs in batch and fixed-bed systems. Desalination 258:164–170

    Article  Google Scholar 

  8. Delkash M, Bakhshayesh BE, Kazemian H (2015) Using zeolitic adsorbents to cleanup special wastewater streams: a review. Microporous Mesoporous Mater 214:224–241

    Article  CAS  Google Scholar 

  9. Sterba JH, Sperrer H, Wallenko F, Welch JM (2018) Adsorption characteristics of a clinoptilolite-rich zeolite compound for Sr and Cs. J Radioanal Nucl Chem 318:267–270

    Article  CAS  Google Scholar 

  10. Faghihian H, Ghannadi Marageh M, Kazemian H (1999) The use of clinoptilolite and its sodium form for removal of radioactive cesium, and strontium from nuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from municipal wastewater. Appl Radiat Isot 50:655–660

    Article  CAS  Google Scholar 

  11. Abusafa A, Yucel H (2002) Removal of 137Cs from aqueous solutions using different cationic forms of a natural zeolite: clinoptilolite. Sep Purif Technol 28:103–116

    Article  CAS  Google Scholar 

  12. Munthali MW, Johan E, Aono H, Matsue N (2015) Cs+ and Sr2+ adsorption selectivity of zeolites in relation to radioactive decontamination. J Asian Ceram Soc 3:245–250

    Article  Google Scholar 

  13. El-Kamash AM (2008) Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J Hazard Mater 151:432–445

    Article  CAS  Google Scholar 

  14. Merceille A, Weinzaepfel E, Barré Y, Grandjean A (2012) The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes. Sep Purif Technol 96:81–88

    Article  CAS  Google Scholar 

  15. Faghihian H, Moayed M, Firooz A, Iravani M (2013) Synthesis of a novel magnetic zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solution: kinetic, equilibrium, and thermodynamic studies. J Colloid Interface Sci 393:445–451

    Article  CAS  Google Scholar 

  16. De Haro-Del Rio DA, Al-Joubori S, Kontogiannis O, Papadatos-Gigantes D, Ajayi O, Li C, Holmes SM (2015) The removal of caesium ions using supported clinoptilolite. J Hazard Mater 289:1–8

    Article  Google Scholar 

  17. Abdel Moamen OA, Ibrahim HA, Abdelmonem N, Ismail IM (2016) Thermodynamic analysis for the sorptive removal of cesium and strontium ions onto synthesized magnetic nano zeolite. Microporous Mesoporous Mater 223:187–195

    Article  Google Scholar 

  18. Huang Y, Wang W, Feng Q, Dong F (2017) Preparation of magnetic clinoptilolite/CoFe2O4 composites for removal of Sr2+ from aqueous solutions: kinetic, equilibrium, and thermodynamic studies. J Saudi Chem Soc 21:58–66

    Article  CAS  Google Scholar 

  19. Alby D, Charnay C, Heran M, Prelot B, Zajac J (2018) Recent developments in nanostructured inorganic materials for sorption of cesium and strontium: synthesis and shaping, sorption capacity, mechanisms, and selectivity—a review. J Hazard Mater 344:511–530

    Article  CAS  Google Scholar 

  20. Cheng R, Kang M, Zhuang S, Shi L, Zheng X, Wang J (2019) Adsorption of Sr(II) from water by mercerized bacterial cellulose membrane modified with EDTA. J Hazard Mater 364:645–653

    Article  CAS  Google Scholar 

  21. Misaelides P (2011) Application of natural zeolites in environmental remediation: a short review. Microporous Mesoporous Mater 144:15–18

    Article  CAS  Google Scholar 

  22. Liu X, Chen GR, Lee DJ, Kawamoto T, Tanaka H, Chen ML, Luo YK (2014) Adsorption removal of cesium from drinking waters: a mini review on use of biosorbents and other adsorbents. Bioresour Technol 160:142–149

    Article  CAS  Google Scholar 

  23. Smičiklas I, Dimović S, Plećaš I (2007) Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Appl Clay Sci 35:139–144

    Article  Google Scholar 

  24. Cappelletti P, Rapisardo G, De Gennaro B, Colella A, Langella A, Graziano SF, Bish DL, De Gennaro M (2011) Immobilization of Cs and Sr in aluminosilicate matrices derived from natural zeolites. J Nucl Mater 414:451–457

    Article  CAS  Google Scholar 

  25. Omerašević M, Ružić J, Vasiljević BN, Baščarević Z, Bučevac D, Orlić J, Matović L (2017) Transformation of Cs-exchanged clinoptilolite to CsAlSi5O12 by hot-pressing. Ceram Int 43:13500–13504

    Article  Google Scholar 

  26. Cerri G, Sale E, Brundu A (2018) Thermal transformations of (NH4, Cs)-clinoptilolite with compositions in between the end-members. Microporous Mesoporous Mater 258:122–130

    Article  CAS  Google Scholar 

  27. Lihareva N, Petrov O, Tzvetanova Y, Kadiyski M, Nikashina V (2015) Evaluation of the possible use of a Bulgarian clinoptilolite for removing strontium from water media. Clay Miner 50:55–64

    Article  CAS  Google Scholar 

  28. Lihareva N, Petrov O, Tzvetanova Y (2017) Modelling of Cs+ uptake by natural clinoptilolite from water media. Bulg Chem Commun 49:577–582

    Google Scholar 

  29. Topas (2009) V4.2: general profile and structure analysis software for powder diffraction. Bruker AXS, Karlsruhe, Germany

    Google Scholar 

  30. Nightingale ER (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63:1381–1387

    Article  CAS  Google Scholar 

  31. Woods R-M, Gunter ME (2001) Na- and Cs-exchange in a clinoptilolite-rich rock: analysis of the outgoing cations in solution. Am Mineral 86:424–430

    Article  CAS  Google Scholar 

  32. Lagergren S (1898) Zur Theory der sogenannten Adsorption gelöster Stoffe. Kungliga SvenskaVetenkapsakademiens Handingar 24:1–39

    Google Scholar 

  33. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  34. Gupta SS, Bhattacharyya KG (2006) Adsorption of Ni(II) on clays. J Colloid Interface Sci 295:21–32

    Article  Google Scholar 

  35. Allen SJ, McKay G, Khader KYH (1989) Intraparticle diffusion of a basic dye during adsorption onto sphagnum peat. Environ Pollut 56:39–50

    Article  CAS  Google Scholar 

  36. Kragović M, Sekulić Ž, Stojanović M, Petrović M, Dondur V, Damjanović L, Jović A (2014) Kinetics of Pb(II) ions removal from aqueous solution using the natural and Fe(III)-modified zeolite. In: Daković A, Trgo M, Langella A (eds.) Proceedings of the 9-th international conference of the occurrence, properties and utilization of natural zeolites, Zeolite 2014, Belgrade, Serbia, pp 109–110

  37. Baek W, Ha S, Hong S, Kim S, Kim Y (2018) Cation exchange of cesium and cation selectivity of natural zeolites: chabazite, stilbite, and heulandite. Microporous Mesoporous Mater 264:159–166

    Article  CAS  Google Scholar 

  38. Helfferich F (1962) Ion exchange. McGrow-Hill, New York

    Google Scholar 

  39. Smyth JR, Spaid AT, Bish DL (1990) Crystal structures of a natural and a Cs-exchanged clinoptilolite. Am Mineral 75:522–528

    CAS  Google Scholar 

  40. Koyama K, Takéuchi Y (1977) Clinoptilolite: the distribution of potassium atoms and its role in thermal stability. Z Kristallogr Cryst Mater 145:216–239

    Article  CAS  Google Scholar 

  41. Alberti A, Vezzalini G (1983) The thermal behaviour of heulandites: a structural study of the dehydration of Nadap heulandite. TMPM Tschermaks Mineral Petrogr Mitt 31:259–270

    Article  CAS  Google Scholar 

  42. Döbelin N, Armbruster T (2003) Stepwise dehydration of Sr-exchanged heulandite: a single-crystal X-ray study. Am Mineral 88:527–533

    Article  Google Scholar 

  43. Khobaer TM, Kuribayashi T, Komatsu K, Kudoh Y (2008) The partially dehydrated structure of natural heulandite: an in situ high temperature single crystal X-ray diffraction study. J Mineral Pet Sci 103:61–76

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Petrov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lihareva, N., Petrov, O., Dimowa, L. et al. Ion exchange of Cs+ and Sr2+ by natural clinoptilolite from bi-cationic solutions and XRD control of their structural positioning. J Radioanal Nucl Chem 323, 1093–1102 (2020). https://doi.org/10.1007/s10967-020-07018-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07018-7

Keywords

Navigation