Skip to main content
Log in

Evaluation of Bulgarian clinoptilolite as ion-exchanger for Cs+ removal from water solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Cesium uptake by natural zeolite clinoptilolite from Bulgaria was studied using batch technique and model solutions. The optimal conditions of interaction were determined. The pseudo-second-order rate model better describes the kinetic data obtained at different concentrations. The intraparticle diffusion and the surface diffusion models were tested to identify the rate-controlling step. The sites in the structure of clinoptilolite that are preferable for exchange were studied by application of Rietveld structural approach and the sequence of site occupation by cesium was followed. The Langmuir isotherm model provides a good fit of the equilibrium experimental data. The thermodynamic parameters for the system were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lieser KH (1995) Radionuclides in the geosphere: sources, mobility, reactions in natural waters and interactions with solids. Radiochim Acta 70(71):355–376

    Google Scholar 

  2. Osmanlioglu AE (2006) Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey. J Hazard Mater 137:332–335

    Article  CAS  Google Scholar 

  3. Elizondo NV, Ballesteros E, Kharisov BI (2000) Cleaning of liquid radioactive wastes using natural zeolites. Appl Radiat Isot 52:27–30

    Article  CAS  Google Scholar 

  4. Cortés-Martínez R, Olguín MT, Solache-Ríos M (2010) Cesium sorption by clinoptilolite –rich tuffs in batch and fixed bed systems. Desalination 258:164–170

    Article  Google Scholar 

  5. Rajec P, Domianová K (2008) Cesium exchange reaction on natural and modified clinoptilolite zeolites. J Radioanal Nucl Chem 275:503–508

    Article  CAS  Google Scholar 

  6. Rajec P, Macášek F, Féder M, Misaelides P, Šamajová E (1998) Sorption of caesium and strontium on clinoptilolite- and mordenite containing sedimentary rocks. J Radioanal Nucl Chem 229:49–55

    Article  CAS  Google Scholar 

  7. Borai EH, Harjula R, Malinen L, Paajanen A (2009) Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals. J Hazard Mater 172:416–422

    Article  CAS  Google Scholar 

  8. Atun G, Bodur N (2002) Retention of Cs on zeolite, bentonite and their mixtures. J Radioanal Nucl Chem 253:275–279

    Article  CAS  Google Scholar 

  9. Shahwan T, Akar D, Eroğlu AE (2005) Physicochemical characterization of the retardation of aqueous Cs+ ions by natural kaolinite and clinoptilolite minerals. J Colloid Interface Sci 285:9–17

    Article  CAS  Google Scholar 

  10. Faghihian H, Marageh MG, Kazemian H (1999) The use of clinoptilolite and its sodium form for removal of radioactive cesium and strontium from nuclear wastewater and Pb2+, Ni2+, Cd2+, Ba2+ from municipal wastewater. Appl Radiat Isot 50:655–660

    Article  CAS  Google Scholar 

  11. Abusafa A, Yücel H (2002) Removal of 137Cs from aqueous solutions using different cationic forms of a natural zeolite: clinoptilolite. Sep Purif Technol 28:103–116

    Article  CAS  Google Scholar 

  12. Smičiklas I, Dimović S, Plećaš I (2007) Removal of Cs1+, Sr2+ and Co2+ from aqueous solutions by adsorption on natural clinoptilolite. Appl Clay Sci 35:139–144

    Article  Google Scholar 

  13. Woods RM, Gunter ME (2001) Na- and Cs-exchange in a clinoptilolite-rich rock: analysis of the outgoing cations in solution. Am Mineral 86:424–430

    Article  CAS  Google Scholar 

  14. Fang X-H, Fang F, Lu C-H, Zheng L (2017) Removal of Cs+, Sr2+, and Co2+ ions from the mixture of organics and suspended solids aqueous solutions by zeolites. Nucl Eng Technol 49:556–561

    Article  CAS  Google Scholar 

  15. Johan E, Yamada T, Munthali MW, Kabwadza-Corner P, Aono H, Matsue N (2015) Natural zeolites as potential materials for decontamination of radioactive cesium. Procedia Environ Sci 28:52–56

    Article  CAS  Google Scholar 

  16. Akai J, Nomura N, Matsushita S, Kudo H, Fukuhara H, Matsuoka S, Matsumoto J (2013) Mineralogical and geomicrobial examination of soil contamination by radioactive Cs due to 2011 Fukushima Daiichi Nuclear Power Plant accident. Phys Chem Earth 58–60:57–67

    Article  Google Scholar 

  17. Smyth JR, Spaid AT, Bish DL (1990) Crystal structures of a natural and a Cs-exchanged clinoptilolite. Am Mineral 75:522–528

    CAS  Google Scholar 

  18. Petrov OE, Filizova LD, Kirov GN (1991) Cation distribution in clinoptilolite structure: Cs-exchaned sample. Compt Rend Acad Bulg Sci 44:77–80

    CAS  Google Scholar 

  19. Misaelides P (2011) Application of natural zeolites in environmental remediation: a short review. Microporous Mesoporous Mater 144:15–18

    Article  CAS  Google Scholar 

  20. Brundu A, Cerri G (2015) Thermal transformation of Cs-clinoptilolite to CsAlSi5O12. Microporous Mesoporous Mater 208:44–49

    Article  CAS  Google Scholar 

  21. Mitrowic B, Vitorovic G, Vitorovic D, Dakovic A, Stojnovic M (2007) AFCF and clinoptilolite use in reduction of 137Cs deposition in several days’ contaminated broiler chicks. J Environ Radioact 95:171–177

    Article  Google Scholar 

  22. Armbruster T (2001) Clinoptilotite-heulandite: applications and basic research. Stud Surf Sci Catal 135:13–27

    Article  Google Scholar 

  23. Chelishchev NF (1993) In: Ming FA, Mumpton DW (eds) Natural Zeolites’93: occurrence, properties, use. International Committee on Natural Zeolites, Brockport, New York

    Google Scholar 

  24. Blandford ED, Ahn J (2012) Examining the nuclear accident at Fukushima Daiichi. Elements 8:189–194

    Article  Google Scholar 

  25. Lihareva N, Dimova L, Petrov O, Tzvetanova Y (2009) Investigation of Zn sorption by natural clinoptilolite and mordenite. Bulg Chem Commun 41:266–271

    CAS  Google Scholar 

  26. Lihareva N, Dimova L, Petrov O, Tzvetanova Y (2010) Kinetics and equilibrium of ion exchange of Ag+ by Na-clinoptilolite. Bulg Chem Commun 42:305–311

    CAS  Google Scholar 

  27. Lihareva N, Petrov O, Tzvetanova Y, Kadiyski M, Nikashina V (2015) Evaluation of the possible use of a Bulgarian clinoptilolite for removing strontium from water media. Clay Miner 50:55–64

    Article  CAS  Google Scholar 

  28. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  29. Topas V 4.2: General Profile and Structure Analysis Software for Powder Diffraction. Bruker AXS, Karlsruhe, Germany

  30. Wu FG, Tseng RL, Juang RS (2001) Kinetic modelling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. W Res 35:613–618

    Article  CAS  Google Scholar 

  31. Ho YS, McKay G (1999) Pseudo-second-order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  32. Gupta SS, Bhattacharyya KG (2006) Adsorption of Ni2+ on clays. J Colloid Interface Sci 295:21–32

    Article  Google Scholar 

  33. Chen H, Wang A (2007) Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay. J Colloid Interface Sci 307:309–316

    Article  CAS  Google Scholar 

  34. Wang S, Li H, Xu L (2006) Application of zeolite MCM-22 for basic dye removal from wastewater. J Colloid Interface Sci 295:71–78

    Article  CAS  Google Scholar 

  35. Vadivelan V, Vasanth Kumar K (2005) Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. J Colloid Interface Sci 286:90–100

    Article  CAS  Google Scholar 

  36. Vasanth Kumar K, Ramamurthi V, Sivanesan S (2005) Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J Colloid Interface Sci 284:14–21

    Article  Google Scholar 

  37. Helferich F (1962) Ion exchange. Mc Graw Hill, New York

    Google Scholar 

  38. Langella A, Pansini M, Cappelleti P, de Gennaro B, de Gennaro M, Colella C (2000) NH4 +, Cu2+, Zn2+, Cd2+ and Pb2+ exchange for Na+ in a sedimentary clinoptilolite, North Sardinia, Italy. Microporous Mesoporous Mater 37:337–343

    Article  CAS  Google Scholar 

  39. Behrens EA, Clearfield A (1997) Titanium silicates, M3HTi4O4(SiO4)3 (M = Na+, K+), with three-dimensional tunnel structures for selective removal of strontium and cesium from wastewater solutions. Microporous Mater 11:65–75

    Article  CAS  Google Scholar 

  40. Singh KP, Mohan D, Sinha S, Tondon GS, Gosh D (2003) Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Ind Eng Chem Res 42:1965–1976

    Article  CAS  Google Scholar 

  41. Ghasemi M, Javadian H, Ghasemi N, Agarwal S, Gupta VK (2016) Microporous nanocrystalline NaA zeolite prepared by microwave assisted hydrothermal method and determination of kinetic, isotherm and thermodynamic parameters of the batch sorption of Ni (II). J Mol Liq 215:161–169

    Article  CAS  Google Scholar 

  42. Coleman NJ, Brassington DS, Raza A, Mendham AP (2006) Sorption of Co2+ and Sr2+ by waste-derived 11 Å tobermorite. Waste Manage 26:260–267

    Article  CAS  Google Scholar 

  43. El-Kamash AM (2008) Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. J Hazard Mater 151:432–445

    Article  CAS  Google Scholar 

  44. Kannan C, Muthuraja K, Devi MR (2013) Hazardous dyes removal from aqueous solution over mesoporous aluminophosphate with textural porosity by adsorption. J Hazard Mater 244:10–20

    Article  Google Scholar 

  45. Kragović M, Daković A, Marković M, Krstić J, Diego Gatta G, Rotiroti N (2013) Characterization of lead sorption by the natural and Fe(III)-modified zeolite. Appl Surf Sci 283:764–774

    Article  Google Scholar 

  46. Abdel Rahman RO, Ibrahim HA, Hanafy M, Abdel Monem NM (2010) Assessment of synthetic zeolite Na A-X as sorbing barrier for strontium in a radioactive disposal facility. Chem Eng J 157:100–112

    Article  CAS  Google Scholar 

  47. Panayotova MI (2001) Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite. Waste Manage 21:671–676

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Lihareva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lihareva, N., Dimowa, L., Petrov, O. et al. Evaluation of Bulgarian clinoptilolite as ion-exchanger for Cs+ removal from water solutions. J Radioanal Nucl Chem 316, 37–47 (2018). https://doi.org/10.1007/s10967-018-5715-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-018-5715-6

Keywords

Navigation