Skip to main content
Log in

Hazard indices and annual effective dose due to terrestrial radioactivity in Northern Kerala, India

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Kerala is listed among the six highest background radiation areas of the world. The west coast of Kerala is very well studied. However, no data is available regarding the high ranges. This study reports measurement of terrestrial concentration of radionuclides in Wayanad district (altitude range 700–2100 m above mean sea level), a known tourist place of Kerala, India having a sizeable tribal population. Activities of 40K, 226Ra and 232Th in soil samples measured using gamma ray spectrometry were found to be 265 ± 334, 21 ± 15 and 39 ± 38 Bq kg−1 respectively. Similar studies were done for rock samples. The average indoor and outdoor hazard indices were found to be 0.24 and 0.20 for soil and 0.5 and 0.4 for rocks, respectively. The indoor radon and thoron concentrations were measured using solid state nuclear track detector. The annual average radon concentration was found to be 31 Bq m−3 and the annual average thoron concentration was 96 Bq m−3. Out of the samples, one house showed elevated thoron concentration with an annual average value of 621 Bq m−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shahbazi-Gahrouei D, Gholami M, Setayandeh S (2013) A review on natural background radiation. Adv Biomed Res 2:65

    Article  Google Scholar 

  2. Puranik VD, Ramachandran TV (2005) Natural and man-made environmental background radiation exposure levels: a review. Environ Geochem 8:60–74

    Google Scholar 

  3. UNSCEAR (2000) Annex B. Exposures from natural radiation sources, United Nations Scientific Committee on effect of atomic radiation, report to the general assembly

  4. Raghu Ram Nair K, Akiba S, Binu VS et al (2005) Individual dose estimation—our experience with the Karunagappally study in Kerala, India. Int Congr Ser 1276:41–45. https://doi.org/10.1016/j.ics.2004.10.030

    Article  Google Scholar 

  5. Ramachandran TV, Lalit BY, Mishra UC (1986) Measurement of radon and thoron present in the environment using nuclear track etch detector technique. Nucl Tracks Radiat Meas 11:245–249

    Article  CAS  Google Scholar 

  6. Valiathan MS, Kartha C, Nair CC et al (1994) Geochemical basis of tropical endomyocardial fibrosis. Curr Sci 67:99–104

    CAS  Google Scholar 

  7. Shaheed K, Somasundaram SSN, Shahul Hameed P, Iyengar MAR (1997) A study of the 210Po distribution aspects of the riverine ecosystem of Kaveri, Tiruchirapalli, India. Environ Pollut 95:371–377

    Article  CAS  Google Scholar 

  8. Department of Mining and Geology (2016) Department of Mining and Geology—Kerala. http://dmg.kerala.gov.in/index.php?option=com_content&view=article&id=55&Itemid=61

  9. Rajan TN, Anilkumar PS (2005) Geology and mineral resources of the states of India, part ix. Geological Survey of India, Kakkanad

  10. Anilkumar PS, Varma ADK, Nair MM (1993) Detailed studies on acid intrusives of Kerala, Part B, GSI report

  11. Derin MT, Vijayagopal P, Venkatraman B et al (2012) Radionuclides and radiation indices of high background radiation area in Chavara–Neendakara placer deposits (Kerala, India). PLoS ONE 7:e50468. https://doi.org/10.1371/journal.pone.0050468

    Article  CAS  Google Scholar 

  12. Bala Sundar S, Chitra N, Vijayalakshmi I et al (2015) Soil radioactivity measurements and estimation of radon/thoron exhalation rates from Kalpakkam residential complex. Radiat Prot Dosimetry 164(4):569–574

    Article  CAS  Google Scholar 

  13. Ramachandran TV (2011) Background radiation, people and the environment. Iran J Radiat Res 9:63–76

    Google Scholar 

  14. Berekta J, Mathew PJ (1985) Natural radioactivity of Australian building materials, industrial wastes and by-products. Heal Phys 48:87–95. https://doi.org/10.1097/00004032-198501000-00007

    Article  Google Scholar 

  15. Sahoo BK, Sapra BK, Kanse SD et al (2013) A new pin-hole discriminated 222Rn/220Rn passive measurement device with single entry face. Radiat Meas 58:52–60

    Article  CAS  Google Scholar 

  16. UNSCEAR (2008) Sources and effects of ionising radiation, vol 1. United Nations Scientific Committee on the Effect of Atomic Radiation, report to the general assembly with scientific annexes

  17. Kerala State Planning Board (2013) Soil fertility assessment and information management for enhancing crop productivity in Kerala

  18. Sannappa J, Ningappa C, Narasimha KNP (2010) Natural Radioactivity levels in granite regions in Karnataka state. Indian J Pure Appl Phys 48:817–819

    CAS  Google Scholar 

  19. Song G, Chen D, Tang Z et al (2012) Natural radioactivity levels in topsoil from the Pearl River Delta Zone, Guangdong, China. J Environ Radioact 103:48–53

    Article  CAS  Google Scholar 

  20. El-Taher A, Al-Zahrani JH (2014) Radioactivity measurements and radiation dose assessments in soil of Al-Qassim region, Saudi Arabia. Indian J Pure Appl Phys 52:147–154

    CAS  Google Scholar 

  21. Ramachandran TV, Eappen KP, Nair RN, et al. (2003) Radon Thoron levels and inhalation dose distribution patterns in Indian dwellings. BARC Newsl BARC/2003/E/26

  22. Selvasekarapandian S, Sivakumar R, Manikandan NM et al (2000) Natural radionuclide distribution in soils of Gudalore, India. Appl Radiat Isot 52:299–306

    Article  CAS  Google Scholar 

  23. Radhakrishna AP, Somashekarappa HM, Narayana Y, Siddappa KA (1993) New natural background radiation area on the southwest coast of India. Heal Phys 65:390–395

    Article  CAS  Google Scholar 

  24. Sannappa J, Chandrashekara MS, Satish LA et al (2003) Study of background radiation dose in Mysore city, Karnataka State India. Radiat Meas 37:55–65

    Article  CAS  Google Scholar 

  25. Kannan V, Rajan MP, Iyengar MAR, Ramesh R (2002) Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry. Appl Radiat Isot 57:109–119. https://doi.org/10.1016/S0969-8043(01)00262-7

    Article  CAS  Google Scholar 

  26. Murugesan S, Mullainathan S, Ramasamy V, Meenakshisundaram V (2011) Radioactivity and radiation hazard assessment of Cauvery River, Tamilnadu, India. Iran J Radiat Res 8:211–222

    Article  Google Scholar 

  27. Manigandan PK, Chandar SB (2014) Evaluation of radionuclides in the terrestrial environment of Western Ghats. J Radiat Res Appl Sci 7:310–316. https://doi.org/10.1016/j.jrras.2014.04.001

    Article  Google Scholar 

  28. Yousuf RM, Abullah KO (2013) Measurement of Natural Radioactivity in Soil Collected from the Eastern of Sulaimany Governorate in Kurdistan—Region, Iraq. ARPN J Sci Technol 3:749–757

    Google Scholar 

  29. Psichoudaki M, Papaefthymiou H (2008) Natural radioactivity measurements in the city of Ptolemais (Northern Greece). J Environ Radioact 99:1011–1017

    Article  CAS  Google Scholar 

  30. Ningappa C, Sannappa J, Karunakara N (2008) Study on radionuclides in granite quarries of Bangalore rural district, Karnataka, India. Radiat Prot Dosimetry 131:495–502. https://doi.org/10.1093/rpd/ncn203

    Article  CAS  Google Scholar 

  31. Ramasamy V, Dheenathayalu M, Meenakshisundaram V, Ponnusamy V (2002) Gamma-ray spectroscopic analysis of biotite granites. Curr Sci 83:1124–1128

    CAS  Google Scholar 

  32. Harb S, El-Kamel AH, Abd El-Mageed AI et al (2014) Measurements of naturally occurring radioactive materials for some granite rocks samples in the Eastern Desert Egypt. IOSR J Appl Phys 6:40–46

    Article  Google Scholar 

  33. Papadopoulos A, Christofides G, Koroneos A et al (2012) Natural radioactivity and dose assessment of granitic rocks from the Atticocycladic Zone (Greece). Period Mineral 81:301–311. https://doi.org/10.2451/2012PM0017

    Google Scholar 

  34. Harb S, El-Kamel AH, Zahran AM et al (2014) Natural radioactivity measurements of basalt rocks in aden governorate, south of Yemen on Gulf of Aden. IOSR J Appl Phys 5:39–48. https://doi.org/10.9790/4861-0563948

    Article  Google Scholar 

  35. D’Cunha P, Narayana Y (2012) Elevated natural radioactivity in soil samples of coastal Kerala, India. J Environ Res Dev 7:700–704

    Google Scholar 

  36. Selvasekarapandian S, Mugunthamanikand N, Sivakumar R et al (1999) Gamma radiation dose from radionuclides in soil samples of Udagamandalam (Ooty) in India. Radiat Prot Dosimetry 82:299–306

    Article  Google Scholar 

  37. Ahmed NK, Abbady A, El Araby AM et al (2006) Comparative study of the natural radioactivity of some selected rocks from Egypt and Germany. Indian J Pure Appl Phys 44:209–215

    CAS  Google Scholar 

  38. Nair NGK, Soman K, Santosh M et al (1985) K–Ar ages of 3 granite plutons from North Kerala. J Geol Soc India 26:674–676

    CAS  Google Scholar 

  39. Manikandan NM, Selvasekarapandian S, Sivakumar R et al (2002) Radon and Thoron progeny levels in air samples at Udagamandalam region of Nilgiris in India. J Radioanal Nucl Chem 252:249–254

    Article  CAS  Google Scholar 

  40. International Commission on Radiation Protection (2007) ICRP Publication 103. Ann ICRP 49–79. http://doi.org/10.1016/j.icrp.2006.06.001

  41. Mc Laughlin JP (2010) An overview of thoron and its progeny in the Indoor environment. Radiat Prot Dosimetry 141:316–321

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reshma Bhaskaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhaskaran, R., Ravikumar, C.D., Vinodkumar, A.M. et al. Hazard indices and annual effective dose due to terrestrial radioactivity in Northern Kerala, India. J Radioanal Nucl Chem 314, 2171–2179 (2017). https://doi.org/10.1007/s10967-017-5583-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5583-5

Keywords

Navigation