Skip to main content
Log in

Sulphur content estimation of Venezuelan heavy oil by fast neutron and gamma transmission technique

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A compact and modern equipment for implementing the fast neutron and γ-ray transmission technique (FNGT) has been developed in order to estimate the sulphur content of crude oil. FNGT is employed for non- destructive analysis of different kinds of samples. The compact system presented in this work represents an improvement of our previous experimental set-up [1, 2]. It makes use of a 252Cf source, an EJ-301 liquid scintillator detector (2″ × 2″) with excellent n/γ discrimination capabilities, and modern nuclear electronics based on fast digitizers. The fast neutron and gamma transmission technique was employed to study a system for on-line sulphur concentration measurement in Venezuelan heavy sour oil. The range of sulphur concentrations investigated is between 0.1 and 6.5 wt%. The equipment performances and limitations are compared with those predicted by a Monte Carlo model built in GEANT4 v10.01. The results show the possibility to implement a compact unit for on-line determination of sulphur concentration in crude oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Viesti G et al (2008) Nucl Instrum Meth A. doi:10.1016/j.nima.2008.05.024

    Google Scholar 

  2. Stevanato L et al (2013) Appl Radiat Isotopes. doi:10.1016/j.apradiso.2012.11.018

    Google Scholar 

  3. Vogel H, Haller D (2007) Eur J Radiol. doi:10.1016/j.ejrad.2007.03.040

    Google Scholar 

  4. Overley J, Chmelik M, Rasmussen R, Schofield R, Sieger R, Lefevre H (2006) Nucl Instrum Meth B. doi:10.1016/j.nimb.2006.04.173

    Google Scholar 

  5. Rynes J et al (1999) Nucl Instrum Meth A. doi:10.1016/S0168-9002(98)01039-0

    Google Scholar 

  6. Chen G, Lanza RC (2002) IEEE Trans Nucl Sci. doi:10.1109/TNS.2002.801696

    Google Scholar 

  7. Cywicka-Jakiel T (2003) Appl Energy. doi:10.1016/S0306-2619(02)00190-3

    Google Scholar 

  8. Sowerby B, Watt J (1990) Nucl Instrum Meth A. doi:10.1016/0168-9002(90)90861-Y

    Google Scholar 

  9. Vourvopoulos G, Womble P (1989) Nucl Instrum Meth B. doi:10.1016/0168-583X(89)90584-3

    Google Scholar 

  10. Borsaru M, Berry M, Biggs M, Rojc A (2004) Nucl Instrum Meth B. doi:10.1016/S0168-583X(03)01623-9

    Google Scholar 

  11. Muhammad S, Al-Mimar H (2015) Statistical analysis of the relations between API, specific gravity and sulphur content in the universal crude oil. Int J Sci Res 4(5):1279–1284

    Google Scholar 

  12. Mohamed AF, Taher AA, Amal E (2010) Fundamentals of petroleum refining, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  13. Riazi MR (2005) Characterization and properties of petroleum fractions. American Society for Testing and Materials (ASTM), West Conshohocken

    Book  Google Scholar 

  14. Tuttle RN (1987) Corrosion in oil and gas production. J Petrol Technol 39:756–762

    Article  CAS  Google Scholar 

  15. Eufrásio Machado JP (2006) Effect of temperature on the level of corrosion caused by heavy petroleum on AISI 304 and AISI 444 stainless steel. Mater Res. doi:10.1590/S1516-14392006000200005

    Google Scholar 

  16. Wood M H, Vetere A L, Van Wijk L, (2013) Corrosion‐related accidents in petroleum refineries: lessons learned from accidents in EU and OECD countries. JRC Scientific and Policy Reports, EUR 26331 EN. Doi: 10.2788/37909

  17. Gazulla MF et al (2013) Fuel 108:247–253. doi:10.1016/j.fuel.2013.02.049

    Article  CAS  Google Scholar 

  18. Cadorim HR et al (2016) Talanta 146(2016):203–208. doi:10.1016/j.talanta.2015.07.088

    Article  CAS  Google Scholar 

  19. Rasmussen RJ et al (1997) Nucl Instrum Meth B. doi:10.1016/S0168-583X(97)00120-1

    Google Scholar 

  20. Cywicka-Jakiel T (2003) Appl Energy. doi:10.1016/S0306-2619(02)00190-3

    Google Scholar 

  21. Stevanato L, Cester D, Nebbia G, Viesti G (2012) Nucl Instrum Meth A. doi:10.1016/j.nima.2012.06.047

    Google Scholar 

  22. Agostinelli S et al (2003) Nucl Instrum Meth A. doi:10.1016/S0168-9002(03)01368-8

    Google Scholar 

  23. Allison J et al (2006) IEEE Trans Nucl Sci. doi:10.1109/TNS.2006.869826

    Google Scholar 

  24. Gohil M et al (2012) Nucl Instrum Meth A. doi:10.1016/j.nima.2011.10.054

    Google Scholar 

  25. Verbinski V, Weber H, Sund R (1973) Prompt gamma rays from 235U(n, f), 239Pu(n, f), and spontaneous fission of 252Cf. Phys Rev C 7:1173–1185

    Article  CAS  Google Scholar 

  26. Antcheva I et al (2011) Comput Phys Commun. doi:10.1016/j.cpc.2011.02.008

    Google Scholar 

  27. Stevanato L et al (2011) Appl Radiat Isotopes. doi:10.1016/j.apradiso.2010.10.022

    Google Scholar 

Download references

Acknowledgements

The co-authors F. Pino and L. Sajo Bohus are indebted for the financial support as invited visitors to the University of Padova.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Pino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pino, F., Stevanato, L., Fabris, D. et al. Sulphur content estimation of Venezuelan heavy oil by fast neutron and gamma transmission technique. J Radioanal Nucl Chem 314, 1833–1839 (2017). https://doi.org/10.1007/s10967-017-5533-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5533-2

Keywords

Navigation