Skip to main content
Log in

Negative muon induced elemental analysis by muonic X-ray and prompt gamma-ray measurements

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

When a negatively charged muon stopped in a material, muonic atom, which has one muon in place of an electron in the atomic system, is formed. After muon deexcitation process with muonic X-ray emission, the muon reaches to the muonic 1 s state, and the muon is absorbed in the nucleus. As a result, highly excited nucleus is produced, and the nucleus emits neutrons and gamma-rays. In this work, we determined elemental depth profiling of gold concentrations on archeological sample, an old Japanese coin, by measuring gamma-ray intensities emitted from activated nucleus with various incident muon energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vasilopoulou T, Stamatelatos IE, Montoya EH, Bedregal PS, Tsalafoutas I, Bode P (2015) Large sample neutron activation analysis of irregular-shaped pottery artifacts. J Radioanal Nucl Chem 303:853–858

    Article  CAS  Google Scholar 

  2. Shirai N, Hidaka Y, Yamaguchi A, Sekimoto S, Ebihara M, Kojima H (2015) Neutron activation analysis of iron meteorites. J Radioanal Nucl Chem 303:1375–1380

    Article  CAS  Google Scholar 

  3. Hevesy G, Levi H (1936) Action of slow neutrons on rare earth elements. Nature 137:185

    Article  CAS  Google Scholar 

  4. Révay Z (2009) Determining elemental composition using prompt γ activation analysis. Anal Chem 81:6851–6859

    Article  Google Scholar 

  5. Ahmed MR, Al-Najjar S, Al-Amili MA, Al-Assafi N, Rammo N, Demidov AM, Govor LI, Cherepantsev YK (1978) Atlas of gamma-ray spectra from the inelastic scattering of reactor fast neutrons. Atomizdat, Moscow

    Google Scholar 

  6. Lutz GJ (1971) Photon activation analysis—a review. Anal Chem 43:93–103

    Article  CAS  Google Scholar 

  7. Engfer R, Schneuwly H, Vuilleumier JL, Walter HK, Zehnder A (1974) Charge-distribution parameters, isotope shifts, isomer shifts, and magnetic hyperfine constants from muonic atoms. At Data Nucl Data Tables 14:509–597

    Article  CAS  Google Scholar 

  8. Suzuki T, Measday DF, Roalsvig JP (1987) Total nuclear capture rates for negative muons. Phys Rev C 35:2212–2223

    Article  CAS  Google Scholar 

  9. Measday DF (2001) The nuclear physics of muon capture. Phys Rep 354:243–409

    Article  CAS  Google Scholar 

  10. Schneuwly H, Dubler T, Kaeser K, Robert-Tissot B, Schaller LA, Schellenberg L (1978) On the influence of the chemical bond on the relative muonic capture rates in elements of compounds. Phys Lett A 66:188–190

    Article  Google Scholar 

  11. Backenstoss G, Charalambus S, Daniel H, Hamilton WD, Lynen U, Von Der Malsburg C, Poelz G, Povel HP (1971) Nuclear γ-rays following muon capture. Nucl Phys A 162:541–551

    Article  CAS  Google Scholar 

  12. Ninomiya K, Ito TU, Higemoto W, Kita M, Shinohara A, Nagatomo T, Kubo MK, Strasser P, Kawamura N, Shimomura K, Miyake Y, Miura T (2011) Negative muon capture on nitrogen oxide molecules. J Korean Phys Soc 59:2917–2920

    Article  CAS  Google Scholar 

  13. Yoshida G, Ninomiya K, Higemoto W, Ito TU, Nagatomo T, Strasser P, Kawamura N, Shimomura K, Miyake Y, Miura T, Kubo MK, Shinohara A (2015) Muon capture probability of carbon and oxygen for CO, CO2, and COS under low-pressure gas conditions. J Radioanal Nucl Chem 303:1277–1281

    Article  CAS  Google Scholar 

  14. Kubo MK, Moriyama H, Tsuruoka Y, Sakamoto S, Koseto E, Saito T, Nishiyama K (2008) Non-destructive elemental depth-profiling with muonic X-rays. J Radioanal Nucl Chem 278:777–781

    Article  CAS  Google Scholar 

  15. Ninomiya K, Nagatomo T, Kubo K, Ito TU, Higemoto W, Kita M, Shinohara A, Strasser P, Kawamura N, Shimomura K, Miyake Y, Saito T (2012) Development of nondestructive and quantitative elemental analysis method using calibration curve between muonic X-ray intensity and elemental composition in bronze. Bull Chem Soc Jpn 85:228–230

    Article  CAS  Google Scholar 

  16. Ninomiya K, Kubo MK, Nagatomo T, Higemoto W, Ito TU, Kawamura N, Strasser P, Shimomura K, Miyake Y, Suzuki T, Kobayashi Y, Sakamoto S, Shinohara A, Saito T (2015) Nondestructive elemental depth-profiling analysis by muonic X-ray measurement. Anal Chem 87:4597–4600

    Article  CAS  Google Scholar 

  17. Shimomura K, Koda A, Strasser P, Kawamura N, Fujimori H, Makimura S, Higemoto W, Nakahara K, Ishida K, Nishiyama K, Nagamine K, Miyake Y (2009) Superconducting muon channel at J-PARC. Nucl Instrum Methods Phys Res Sect A 600:192–194

    Article  CAS  Google Scholar 

  18. Ueda M, Taguchi I, Saito T (1996) Non-destructive analysis of the fineness of Kobans in the Yedo Period, Discussion Paper 1996-E-26. Institute for Monetary and Economic Studies, Bank of Japan, Tokyo

    Google Scholar 

  19. Blachot J (2000) Nuclear data sheets for A = 108. Nucl Data Sheets 91:135–296

    Article  CAS  Google Scholar 

  20. Singh B (2006) Nuclear data sheets for A = 194. Nucl Data Sheets 107:1531–1746

    Article  CAS  Google Scholar 

  21. Xiaolong H (2007) Nuclear data sheets for A = 196. Nucl Data Sheets 108:1093–1286

    Article  Google Scholar 

  22. Measday DF, Stocki TJ, Tam H (2007) γ rays from muon capture in I, Au and Bi. Phys Rev C 75:045501

    Article  Google Scholar 

  23. Daniel H, Hartmann FJ, Naumann RA (1999) Solid-state effects on Coulomb capture and X-ray cascade of negative muons. Phys Rev A 59:3343–3348

    Article  CAS  Google Scholar 

  24. Oshima M, Toh Y, Hatsukawa Y, Koizumi M, Kimura A, Haraga A, Ebihara M, Syshida K (2008) Multiple gamma-ray detection method and its application to nuclear chemistry. J Radioanal Nucl Chem 278:257–262

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Grant-in-Aid for Young Scientists B (JSPS KAKENHI, Japan: Grant Number 26800213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ninomiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ninomiya, K., Inagaki, M., Kubo, M.K. et al. Negative muon induced elemental analysis by muonic X-ray and prompt gamma-ray measurements. J Radioanal Nucl Chem 309, 65–69 (2016). https://doi.org/10.1007/s10967-016-4772-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4772-y

Keywords

Navigation