Skip to main content
Log in

Extraction of uranyl peroxo clusters from aqueous solution by mesoporous silica SBA-15

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Soluble uranyl peroxo clusters in aqueous solution are potentially important for the transport and remediation of uranium. We studied extraction of one of such clusters, U60 [(Li48+mK12(OH)m[UO2(O2)(OH)]60(H2O)n, m ≈ 20, n ≈ 310 in the solid state], from aqueous solution using mesoporous silica SBA-15. A steady state was reached after 24 h with the extraction efficiency of 97.1 % and a distribution coefficient of 886.8 mL g−1. Both pseudo-first-order and pseudo-second-order models describe the extraction kinetics, although the pseudo second-order model has a slightly higher correlation coefficient and a calculated extraction capacity at steady state (6.48 mg g−1) closer to the experimental value (6.77 mg g−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Office of Radiation and Indoor Air (6,608 J) (2006) Radioactive contamination at clean-up sites. United States Environmental Protection Agency EPA 402-F-06-017.

  2. Mathews T, Beaugelin-Seiller K, Garnier-Laplace J, Gilbin R, Adam C, Della-Vedova C (2009) Environ Sci Technol 43:6684–6690

    Article  CAS  Google Scholar 

  3. Jiang GCT, Aschiner M (2006) Biol Trace Elem Res 110:1–17

    Article  CAS  Google Scholar 

  4. Burns PC, Ewing RC, Navrotsky A (2012) Science 335:1184–1188

    Article  CAS  Google Scholar 

  5. Walther C, Denecke MA (2013) Chem Rev 113:995–1015

    Article  CAS  Google Scholar 

  6. Eriksen TE, Eklund UB, Werme L, Bruno J (1995) J Nucl Mater 227:76–82

    Article  CAS  Google Scholar 

  7. Clarens F, de Pablo J, Díez-Pérez I, Casas I, Giménez J, Rovira M (2004) Environ Sci Technol 38:6656–6661

    Article  CAS  Google Scholar 

  8. Armstrong CR, Nyman M, Shvareva T, Sigmon GE, Burns PC, Navrotsky A (2012) Proc Natl Acad Sci USA 109:1874–1877

    Article  CAS  Google Scholar 

  9. Qiu J, Burns PC (2013) Chem Rev 113:1097–1120

    Article  CAS  Google Scholar 

  10. Biswas B, Mougel V, Pécaut J, Mazzanti M (2011) Angew Chem Int Ed 50:5745–5748

    Article  CAS  Google Scholar 

  11. Ye X, Cui S, Almeida VD, Khomami B (2009) J Phys Chem B 113:9852–9862

    Article  CAS  Google Scholar 

  12. Fryxell GE, Lin Y, Fiskum S, Birnbaum JC, Wu H, Kemner K, Kelly S (2005) Environ Sci Technol 39:1324–1331

    Article  CAS  Google Scholar 

  13. Johnson BE, Santschi PH, Chuang CY, Otosaka S, Addleman RS, Douglas M, Rutledge RD, Chouyyok W, Davidson JD, Fryxell GE, Schwantes JM (2012) Environ Sci Technol 46:11251–11258

    Article  CAS  Google Scholar 

  14. Manos MJ, Kanatzidis MG (2012) J Am Chem Soc 134:16441–16446

    Article  CAS  Google Scholar 

  15. Semnani F, Asadi Z, Samadfam M, Sepehrian H (2012) Ann Nucl Energy 48:21–24

    Article  CAS  Google Scholar 

  16. O’Loughlin EJ, Kelly SD, Cook RE, Csencsits R, Kemner KM (2003) Environ Sci Technol 37:721–727

    Article  Google Scholar 

  17. Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2002) Nature 419:134

    Article  CAS  Google Scholar 

  18. Wang XH, Zhu GR, Guo F (2013) Ann Nucl Energy 56:151–157

    Article  CAS  Google Scholar 

  19. Yuan LY, Liu YL, Shi WQ, Li ZJ, Lan JH, Feng YX, Zhao YL, Yuan YL, Chai ZF (2012) J Mater Chem 22:17019–17026

    Article  CAS  Google Scholar 

  20. Wang YL, Song LJ, Zhu L, Guo BL, Chen SW, Wu WS (2014) Dalton Trans 43:3739–3749

    Article  CAS  Google Scholar 

  21. Sigmon GE, Unruh DK, Ling J, Weaver B, Ward M, Pressprich L, Simonetti A, Burns PC (2009) Angew Chem Int Ed 48:2737–2740

    Article  CAS  Google Scholar 

  22. Zhao DY, Sun JY, Li QZ, Stucky GD (2000) Chem Mater 12:275–279

    Article  CAS  Google Scholar 

  23. Hogan CJ, Carroll JA, Rohrs HW, Biswas P, Gross ML (2008) Anal Chem 81:369–377

    Article  Google Scholar 

  24. Khenkin AM, Efremenko I, Martin JML, Neumann R (2013) J Am Chem Soc 135:19304–19310

    Article  CAS  Google Scholar 

  25. McGrail BT, Sigmon GE, Jouffret LJ, Andrews CR, Burns PC (2014) Inorg Chem 53:1562–1569

    Article  CAS  Google Scholar 

  26. Chen L, Yap YL (2008) J Am Soc Mass Spectrom 19:46–54

    Article  Google Scholar 

  27. Bastians S, Crump G, Griffith WP, Withnall R (2004) J Raman Spectrosc 35:726–731

    Article  CAS  Google Scholar 

  28. Amayri S, Reich T, Arnold T, Geipel G, Bernhard G (2005) J Solid State Chem 178:567–577

    Article  CAS  Google Scholar 

  29. Qiu J, Nguyen K, Jouffret LJ, Szymanowski JES, Burns PC (2012) Inorg Chem 52:337–345

    Article  Google Scholar 

  30. Luan ZH, Maes EM, van der Heide PAW, Zhao DY, Czernuszewicz RS, Kevan L (1999) Chem Mater 11:3680–3686

    Article  CAS  Google Scholar 

  31. Borodko Y, Ager JW, Marti GE, Song H, Niesz K, Somorjai GA (2005) J Phys Chem B 109:17386–17390

    Article  CAS  Google Scholar 

  32. Buckett MI, Strane J, Luzzi DE, Zhang JP, Wessels BW, Marks LD (1989) Ultramicroscopy 29:217–227

    Article  CAS  Google Scholar 

  33. Garvie LAJ, Buseck PR (1999) J Phys Chem Solids 60:1943–1947

    Article  CAS  Google Scholar 

  34. Yuan LY, Liu YL, Shi WQ, Lv YL, Lan JH, Zhao YL, Chai ZF (2011) Dalton Trans 40:7446–7453

    Article  CAS  Google Scholar 

  35. Ho YS (2006) J Hazard Mater 136:681–689

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based on work supported as part of the Material Science of Actinides Center, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001089. We thank Dr. Sergei Rouvimov for TEM collection through Notre Dame Integrated Image Facility (NDIIF) and instrument supports from Center for Environmental Science & Technology (CEST) at University of Notre Dame. Raman spectra were collected at the Materials Characterization Facility of the Center for Sustainable Energy at the University of Notre Dame. ESI–MS was conducted at the Mass Spectrometry and Proteomics Facility at the University of Notre Dame.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter C. Burns.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Czarnecki, A., Szymanowski, J.E.S. et al. Extraction of uranyl peroxo clusters from aqueous solution by mesoporous silica SBA-15. J Radioanal Nucl Chem 303, 2257–2262 (2015). https://doi.org/10.1007/s10967-014-3740-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3740-7

Keywords

Navigation