Skip to main content
Log in

Biodistribution of 99mTc–2-aminoestrone-3-methyl ether as a potential radiotracer for inflammation imaging

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Estrogens may have pro- and anti-inflammatory properties depending on the situation and the involved tissue. 2-Aminoestrone-3-methyl ether as an estrogenic derivative was prepared with a yield of 55 % and well characterized. 99mTc–2-aminoestrone-3-methyl ether radiotracer was synthesized to study its inflammatory binding specificity as a novel selective radiopharmaceutical for inflammation imaging. In-vivo biodistribution study of 99mTc–2-amino estrone-3-methyl ether complex in both bacterial infection and sterile inflammation showed high and rapid accumulation of 99mTc–2-aminoestrone-3-methyl ether complex at the site of sterile inflammation compared to bacterial infection sites (target-to-non target ratio equal to 4.12 ± 0.02). This high biological accumulation in inflamed cells suggests that 99mTc–2-aminoestrone-3-methyl ether complex may be suitable as a potential selective radiotracer able to image inflammatory sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yang M, Liu C, Niu M, Hu Y, Guo M, Zhang J, Luo Y, Yuan W, Yang M, Yun M, Guo L, Yan J, Liu D, Liu J, Jiang Y (2014) Phage-display library biopanning and bioinformatic analysis yielded a high-affinity peptide to inflamed vascular endothelium both in-vitro and in-vivo. J Controlled Release 174:72–80

    Article  CAS  Google Scholar 

  2. Zehnder P, Jenni W, Aeschlimann AG (1998) Systemic vasculitis and solid tumors (epitheliomas). Rev Rhum Engl Ed 65:442

    CAS  Google Scholar 

  3. Fain O (2002) Vasculitis and cancers. Rev Med Intern Found Soc Natl Fr Med Intern 23(Suppl. 5):551–553

    Google Scholar 

  4. Lee CK, Lee TH, Lee SH, Chung IK, Park SH, Kim HS, Kim SJ (2010) GI vasculitis associated with systemic lupus erythematosus. Gastrointest Endosc 72:618–619

    Article  Google Scholar 

  5. Hervier B, Hamidou M, Haroche J, Durant C, Mathian A, Amoura Z (2012) Systemic lupus erythematosus associated with ANCA-associated vasculitis: an overlapping syndrome? Rheumatol Int 32:3285–3290

    Article  CAS  Google Scholar 

  6. Butendieck RR, Parikh K, Stewart M, Davidge-Pitts C, Abril A (2012) Systemic lupus erythematosus-associated retinal vasculitis. J Rheumatol 39:1095–1096

    Article  Google Scholar 

  7. Radic M, Kaliterna DM, Radic J (2013) Overview of vasculitis and vasculopathy in rheumatoid arthritis—something to think about. Clin Rheumatol 32:937–942

    Article  Google Scholar 

  8. Hartge MM, Unger T, Kintscher U (2007) The endothelium and vascular inflammation in diabetes. Diabetes Vasc Dis Res 4:84–88

    Article  Google Scholar 

  9. Onat D, Brillon D, Colombo PC, Schmidt AM (2011) Human vascular endothelial cells: a model system for studying vascular inflammation in diabetes and atherosclerosis. Curr Diabetes Rep 11:193–202

    Article  CAS  Google Scholar 

  10. Schwartz EA, Reaven PD (2012) Lipolysis of triglyceride-rich lipoproteins, vascular inflammation, and atherosclerosis. Biochim Biophys Acta 1821:858–866

    Article  CAS  Google Scholar 

  11. Beltram J (1995) MR imaging of soft tissue infection. Magn Reson Imaging Clin N Am 3:743–751

    Google Scholar 

  12. Vazquez E, Enriquez G, Castellote A, Lucaya J, Creixell S, Aso C, Regas J (1995) US, CT, and MR imaging of neck lesions in children. Radiographics 15:105–122

    Article  CAS  Google Scholar 

  13. Welling MM, Paulusma-Annema A, Balter HS, Pauwels EK, Nibbering PH (2000) Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur J Nucl Med 27:292–301

    Article  CAS  Google Scholar 

  14. Corstens FHM, Van der Meer JWM (1999) Nuclear Medicine’s role in infection and inflammation. Lancet 354:760–765

    Article  Google Scholar 

  15. Chianelli M, Mather SJ, Martin –Comin J, Signore A (1997) Radiopharmaceutical for the study of inflammatory processes: a review. Nucl Med Comm 18:437–455

    Article  CAS  Google Scholar 

  16. Okarvi SM (1999) Recent developments in 99mTc-labelled peptide-based radiopharmaceuticals an overview. Nucl Med Commun 20:1093–1112

    Article  CAS  Google Scholar 

  17. Boerman OC, Oyen WJG, Corstens FHM (2000) Radio-labeled receptor binding peptides: a new class of radiopharmaceuticals. Semin Nucl Med 30:195–208

    Article  CAS  Google Scholar 

  18. Signore A, Annovazzi A, Chianelli M, Corsetti F, Van De Wiele C, Watherhouse RN, Scopinaro F (2001) Peptide radiopharmaceuticals for diagnosis and therapy. Eur J Nucl Med 28:1555–1565

    Article  CAS  Google Scholar 

  19. Martín-Millán M, Castaneda S (2013) Estrogens, osteoarthritis and inflammation. Joint Bone Spine 80:368–373

    Article  Google Scholar 

  20. Davis KE, Neinast MD, Sun K, Skiles WM, Bills JD, Zehr JA, Zeve D, Hahner LD, Cox DW, Gent LM, Xu Y, Wang ZV, Khan SA, Clegg DJ (2013) The sexually dimorphic role of adipose and adipocyte estrogen receptors in modulating adipose tissue expansion, inflammation, and fibrosis. Mol Metab 2:227–242

    Article  CAS  Google Scholar 

  21. Holm A, Andersson KE, Nordström I, Hellstrand P, Nilsson B (2010) Down-regulation of endothelial cell estrogen receptor expression by the inflammation promoter LPS. Mol Cell Endocrinol 319:8–13

    Article  CAS  Google Scholar 

  22. Spence RD, Voskuhl RR (2012) Neuroprotective effects of estrogens and androgens in CNS inflammation and neurodegeneration. Front Neuroendocrinol 33:105–115

    Article  CAS  Google Scholar 

  23. Dhyani MV, Satpati D, Korde A, Banerjee S (2011) Synthesis and preliminary bioevaluation of 99mTc(CO)3-17α-triazolylandrost-4-ene-3-one derivative prepared via click chemistry route. Cancer Biotherapy Radiopharm 26:539–545

    Article  CAS  Google Scholar 

  24. Nayak TK, Hathaway HJ, Ramesh C, Arterburn JB, Dai D, Sklar LA, Norenberg JP, Prossnitz ER (2008) Preclinical development of a neutral, estrogen receptor–targeted, tridentate 99mTc(I)-estradiol-pyridin-2-yl hydrazine derivative for imaging of breast and endometrial cancers. J Nucl Med 49:978–986

    Article  CAS  Google Scholar 

  25. Jiang X, Shapiro DJ (2014) The immune system and inflammation in breast cancer. Mol Cell Endocrinol 382:673–682

    Article  CAS  Google Scholar 

  26. Edgar AR, Judith PY, Elisa DSM, Rafael CR (2013) Glucocorticoids and estrogens modulate the NF-kB pathway differently in the micro- and microvasculature. Med Hypotheses 81:1078–1082

    Article  CAS  Google Scholar 

  27. Gosselin D, Rivest S (2011) Estrogen receptor transrepresses brain inflammation. Cell 145:495–497

    Article  CAS  Google Scholar 

  28. Kovats S (2012) Estrogen receptors regulate an inflammatory pathway of dendritic cell differentiation: mechanisms and implications for immunity. Horm Behav 62:254–262

    Article  CAS  Google Scholar 

  29. Saint-Criq V, Rapetti-Mauss R, Yusef YR, Harvey BJ (2012) Estrogen regulation of epithelial ion transport: implications in health and disease. Steroids 77:918–923

    Article  CAS  Google Scholar 

  30. Miller VM, Jayachandran M, Hashimoto K, Heit JA, Owen WG (2008) Estrogen, inflammation, and platelet phenotype. Gend Med 5:91–102

    Article  Google Scholar 

  31. Chinenov Y, Gupte R, Rogatsky I (2013) Nuclear receptors in inflammation control: repression by GR and beyond. Mol Cell Endocrinol 380:55–64

    Article  CAS  Google Scholar 

  32. Fan GW, Gao XM, Wang H, Zhu Y, Zhang J, Hu LM, Su YF, Kang LY, Zhang BL (2009) The anti-inflammatory activities of Tanshinone IIA, an active component of TCM, are mediated by estrogen receptor activation and inhibition of iNOS. J Steroid Biochem Mol Biol 113:275–280

    Article  CAS  Google Scholar 

  33. Tomsonand AJ, Horwitz JP (1959) Some 2- and 4-substituted estrone 3-methyl ethers. J Org Chem 24:2056–2058

    Article  Google Scholar 

  34. Kraychy S (1959) Synthesis of potential metabolites of estradiol. J Am Chem Soc 81:1702–1704

    Article  CAS  Google Scholar 

  35. Motaleb MA (2007) Preparation of 99mTc-cefoperazone complex, a novel agent for detecting sites of infection. J Radioanal Nucl Chem 272:167–171

    Article  CAS  Google Scholar 

  36. Rhodes BA (1974) Consideration in the radiolabeling of albumin. Sem Nucl Med 4:281–293

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project was supported by a grant from the “Research Center of Female Scientific and Medical Colleges”, Deanship of Scientific Research, King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafaa A. Zaghary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Mutairi, M.S., Motaleb, M.A., Haress, N.G. et al. Biodistribution of 99mTc–2-aminoestrone-3-methyl ether as a potential radiotracer for inflammation imaging. J Radioanal Nucl Chem 303, 237–244 (2015). https://doi.org/10.1007/s10967-014-3320-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3320-x

Keywords

Navigation