Skip to main content
Log in

Insights into sorption species of Eu(III) on γ-Al2O3 and bentonite under different pH: Studies at macro- and micro-scales

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The sorption species of Eu(III) on γ-Al2O3 and bentonite was investigated by batch, surface complexation model (SCM), and X-ray absorption spectroscopy (XAS). The results showed that sorption edges of Eu(III) on γ-Al2O3 and bentonite were as expected shifted forward high pH with the increasing in Eu(III) concentration, and sorption of Eu(III) was strongly dependent on pH. In γ-Al2O3 system, sorption of Eu(III) was decreased above pH 8.5 at low concentration of Eu(III) because of water soluble carbonate species of Eu(III), however the decline did not appear at high concentration of Eu(III) possibly due to a offset effect of surface precipitation. Actually, the sorption species of Eu(III) on bentonite mainly referred to at least four kinds of species including ion exchange (>X3Eu0) at low pH, inner-sphere complexes (>AlOEu2+ and >SiOEu2+) at neutral condition, and hydrolysis species (>SiOEu(OH) 02 ) at alkaline condition. Linear combination fitting (LCF) in k space testified that hydrolysis of Eu(OH)3(s) and oxide of Eu2O3 species were major for Eu(III) sorption on γ-Al2O3, whereas Eu3+(aq) and hydrolysis species comprised sorption species on bentonite. Extended X-ray absorption fine structure (EXAFS) analysis further confirmed the prediction from SCM and LCF. In addition, the typical shells of Eu–Al in R range of 3.0–3.4 Å and Eu–Si at ~4.0 Å were found in radial structure functions, which was possibly identified to edge-shared bidentate of Eu(III) on Al2O3 and bentonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu JZ, Fan QH, Niu ZW, Li Y, Li P, Wu WS (2012) Chem Eng J 179:186–192

    Article  CAS  Google Scholar 

  2. Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Environ Sci Technol 43:5776–5782

    Article  CAS  Google Scholar 

  3. Fan QH, Zhang ML, Zhang YY, Ding KF, Yang ZQ, Wu WS (2010) Radiochim Acta 98:19–25

    Article  CAS  Google Scholar 

  4. Li P, Fan QH, Pan DQ, Liu SP, Wu WS (2011) J Radioanal Nucl Chem 298:757–764

    Article  Google Scholar 

  5. Wang X, Xu D, Chen L, Tan X, Zhou X, Ren A, Chen C (2006) Appl Radiat Isot 64:414–421

    Article  CAS  Google Scholar 

  6. Dong W, Wang X, Bian X, Wang A, Du J, Tao ZY (2001) Appl Radiat Isot 54:603–610

    Article  CAS  Google Scholar 

  7. Fairhurst AJ, Warwick P (1998) Colloids Surf A 145:229–234

    Article  CAS  Google Scholar 

  8. Guo Z, Xu J, Shi K, Tang Y, Wu W, Tao Z (2009) Colloids Surf A 339:126–133

    Article  CAS  Google Scholar 

  9. Granados-Correa F, Vilchis-Granados J, Jimenez-Reyes M, Quiroz-Granados LA (2013) J. Chem. 2013:1–9

    Article  Google Scholar 

  10. Yu T, Wu WS, Liu ZR, Zhang SW, Nie ZW (2013) Korean J Chem Eng 30:440–447

    Article  CAS  Google Scholar 

  11. Tertre E, Berger G, Castet S, Loubet M, Giffaut E (2005) Geochim Cosmochim Acta 69:4937–4948

    Article  CAS  Google Scholar 

  12. Rabung T, Geckeis H, Kim JI, Beck HP (1998) J Colloid Interf Sci 208:153–161

    Article  CAS  Google Scholar 

  13. Tertre E, Berger G, Simoni E, Castet S, Giffaut E, Loubet M, Catalette H (2006) Geochim Cosmochim Acta 70:4563–4578

    Article  CAS  Google Scholar 

  14. Tan X, Fang M, Li J, Lu Y, Wang X (2009) J. Hazard. Mat. 168:458–465

    Article  CAS  Google Scholar 

  15. Montavon G, Markai S, Andres Y, Grambow B (2002) Environ Sci Technol 36:3303–3309

    Article  CAS  Google Scholar 

  16. Guo ZJ, Wang SR, Shi KL, Wu WS (2009) Radiochim Acta 97:283–289

    CAS  Google Scholar 

  17. Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Micropor. Mesopor. Mat. 123:1–9

    Article  CAS  Google Scholar 

  18. Bouby M, Lutzenkirchen J, Dardenne K, Preocanin T, Denecke MA, Klenze R, Geckeis H (2010) J Colloid Interf Sci 350:551–561

    Article  CAS  Google Scholar 

  19. Sheng GD, Shao DD, Fan QH, Xu D, Chen YX, Wang XK (2009) Radiochim Acta 97:621–630

    Article  CAS  Google Scholar 

  20. Hurel C, Marmier N (2010) J Radioanal Nucl Chem 284:225–230

    Article  CAS  Google Scholar 

  21. Rabung T, Stumpf T, Geckeis H, Klenze R, Kim JI (2000) Radiochim Acta 88:711–716

    Article  CAS  Google Scholar 

  22. Kumar S, Kar AS, Bhattacharyya D, Tomar BS (2012) J Radioanal Nucl Chem 294:109–113

    Article  CAS  Google Scholar 

  23. Yang S, Sheng G, Montavon G, Guo Z, Tan X, Grambow B, Wang X (2013) Geochim Cosmochim Acta doi.org/10.1016/j.gca.2013.07.013

  24. Tan XL, Wang XK, Geckeis H, Rabung T (2008) Environ Sci Technol 42:6532–6537

    Article  CAS  Google Scholar 

  25. Schlegel ML, Pointeau I, Coreau N, Reiller P (2004) Environ Sci Technol 38:4423–4431

    Article  CAS  Google Scholar 

  26. Takahashi Y, Kimura T, Kato Y, Minai Y (1999) Environ Sci Technol 33:4016–4021

    Article  CAS  Google Scholar 

  27. Guo ZJ, Yu XM, Guo FH, Tao ZY (2005) J Colloid Interf Sci 288:14–20

    Article  CAS  Google Scholar 

  28. Pan DQ, Fan QH, Li P, Liu SP, Wu WS (2011) Chem Eng J 172:898–905

    Article  CAS  Google Scholar 

  29. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541

    Article  CAS  Google Scholar 

  30. Newville M (2001) J Synchrotron Radiat 8:96–100

    Article  CAS  Google Scholar 

  31. Mullica DF, Milligan WO, Beall GW (1979) J Inorg Nucl Chem 41:525–532

    Article  CAS  Google Scholar 

  32. Garskaite E, Sakirzanovas S, Kareiva A, Glaser J, Meyer HJ (2007) Z Anorg Allg Chem 633:990–993

    Article  CAS  Google Scholar 

  33. Evers J, Oehlinger G, Weiss A (1977) J Solid State Chem 20:173–181

    Article  CAS  Google Scholar 

  34. Westall JC, Morel FMM (1977) FITEQL: a general algorithm for the determination of metal–ligand complex stability constants from experimental data, technical note 18, Ralph M. Parsons Laboratory, Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge,Mass 1977

  35. Fan QH, Li P, Chen YF, Wu WS (2011) J. Hazard. Mat. 192:1851–1859

    Article  CAS  Google Scholar 

  36. Wang YQ, Fan QH, Li P, Zheng XB, Xu JZ, Jin YR, Wu WS (2011) J Radioanal Nucl Chem 287:231–237

    Article  CAS  Google Scholar 

  37. Kasar S, Kumar S, Kar AS, Godbole SV, Tomar BS (2013) Colloids Surf A 434:72–77

    Article  CAS  Google Scholar 

  38. Elkins KM, Nelson DJ (2002) Coord Chem Rev 228:205–225

    Article  CAS  Google Scholar 

  39. Allen PG, Bucher JJ, Shuh DK, Edelstein NM, Crai I (2000) Inorg Chem 39:595–601

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was jointly supported by the National Natural Science Foundation of China (Grant No. 11075006, 91026010), Special Foundation for High-level Waste Disposal (2007-840, 2012-851), the Fundamental Research Funds for the Central Universities, Analysis foundation of Peking University (16–19), and the National Synchrotron Radiation Innovation Foundation of Chinese Education Ministry (20090137S). We greatly acknowledge Dr. Bo He (NSRL, USTC) for helpful technical assistance of EXAFS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunli Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, Q., Li, P., Zheng, Z. et al. Insights into sorption species of Eu(III) on γ-Al2O3 and bentonite under different pH: Studies at macro- and micro-scales. J Radioanal Nucl Chem 299, 1767–1775 (2014). https://doi.org/10.1007/s10967-013-2819-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2819-x

Keywords

Navigation