Skip to main content
Log in

Synthesis of phosphorus-modified poly(styrene-co-divinylbenzene) chelating resin and its adsorption properties of uranium(VI)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new phosphorus-modified poly(styrene-co-divinylbenzene) chelating resin (PS–N–P) was synthesized by P,P-dichlorophenylphosphine oxide modified commercially available ammoniated polystyrene beads, and characterized by Fourier transform infrared spectroscopy and elemental analysis. The adsorption properties of PS–N–P toward U(VI) from aqueous solution were evaluated using batch adsorption method. The effects of the contact time, temperature, pH and initial uranium concentration on uranium(VI) uptake were investigated. The results show that the maximum adsorption capacity (97.60 mg/g) and the maximum adsorption rate (99.72 %) were observed at the pH 5.0 and 318 K with initial U(VI) concentration 100 mg/L and adsorbent dose 1 g/L. Adsorption equilibrium was achieved in approximately 4 h. Adsorption kinetics studied by pseudo second-order model stated that the adsorption was the rate-limiting step (chemisorption). U(VI) adsorption was found to barely decrease with the increase in ionic strength. Equilibrium data were best modeled by the Langmuir isotherm. The thermodynamic parameters such as ∆G 0, ∆H 0 and ∆S 0 were derived to predict the nature of adsorption. Adsorbed U(VI) ions on PS–N–P resin were desorbed effectively (about 99.39 %) by 5 % NaOH–10 % NaCl. The synthesized resin was suitable for repeated use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bozkurt SS, Cavas L, Merdivan M, Molu ZB (2011) Biosorption of uranium(VI) and thorium (IV) onto Ulva gigantea (Kützing) bliding: discussion of adsorption isotherms, kinetics and thermodynamic. J Radioanal Nucl Chem 288:867–874

    Article  CAS  Google Scholar 

  2. Humelnicu D, Popovici E, Dvininov E, Mital C (2009) Study on the retention of uranyl ions on modified clays with titanium oxide. J Radioanal Nucl Chem 279:131–136

    Article  CAS  Google Scholar 

  3. Anirudhan TS, Bringle CD, Rijith S (2010) Removal of uranium(VI) from aqueous solutions and nuclear industry effluents using humic acid-immobilized zirconium-pillared clay. J Environ Radioact 101:267–276

    Article  CAS  Google Scholar 

  4. Anirudhan TS, Divya L, Suchithra PS (2009) Kinetic and equilibrium characterization of uranium(VI) adsorption onto carboxylate-functionalized poly(hydroxyethylmethacrylate)-grafted lignocellulosics. J Environ Manag 90:549–560

    Article  CAS  Google Scholar 

  5. Girgin S, Acarkan N, Sirkeci AA (2002) The uranium(VI) extraction mechanism of D2EHPA–TOPO from a wet process phosphoric acid. J Radioanal Nucl Chem 251:263–271

    Article  CAS  Google Scholar 

  6. Parsons JG, Iiemann KJ, Peralta-Videa JR, Gardea-Torresdey JL (2006) Sorption of uranyl cations onto inactivated cells of alfalfa biomass investigated using chemical modification, ICP-OES and XAS. Environ Sci Technol 40:4181–4188

    Article  CAS  Google Scholar 

  7. Mahramanlioglu M (2003) Adsorption of uranium on adsorbents produced from used tires. J Radioanal Nucl Chem 256:99–105

    Article  CAS  Google Scholar 

  8. Mahramanlioglu M, Bicer IO, Misirli T, Kilislioglu A (2007) Removal of uranium by the adsorbents produced from coffee residues. J Radioanal Nucl Chem 273:621–624

    Article  CAS  Google Scholar 

  9. Jansson-Charrier M, Guibel E, Roussy J (1996) Dynamic removal of uranium by chitosan: influence of operating parameters. Water Sci Technol 34:169–177

    Google Scholar 

  10. Morsy AMA, Hussein AEM (2011) Adsorption of uranium from crude phosphoric acid using activated carbon. J Radioanal Nucl Chem 288:341–346

    Article  CAS  Google Scholar 

  11. Bishay AF (2010) Environmental application of rice straw in energy production and potential adsorption of uranium and heavy metals. J Radioanal Nucl Chem 286:81–89

    Article  CAS  Google Scholar 

  12. Atea AA (2005) Studies on the interaction of mercury(II) and uranyl(II) with modified chitosan resins. Hydrometallurgy 80:13–22

    Article  Google Scholar 

  13. Rivas BL, Maturama HA, Ocampo X, Peric IM (1995) Adsorption behavior of Cu2+ and UO2 2+ ions on crosslinked poly [2,2-bis(acrylamido)acetic acid]. J Appl Polym Sci 58:2201–2205

    Article  CAS  Google Scholar 

  14. Ulusoy U, Simsek S, Ceyhan O (2003) Investigations for modification of polyacrylamide–bentonite by phytic acid and its usability in Fe3+, Zn2+ and UO2 2+ adsorption. Adsorption 9:165–175

    Article  CAS  Google Scholar 

  15. El-Shahet MF, Moawed EA, Farag AB (2007) Chemical enrichment and separation of uranyl ions in aqueous media using novel polyurethane foam chemically grafted with different basic dyestuff sorbents. Talanta 71:236–241

    Article  Google Scholar 

  16. Shukla SR, Pai RS, Shendarkar AD (2006) Adsorption of Ni(II), Zn(II) and Fe(II) on modified coir fibres. Sep Purif Technol 47:141–147

    Article  CAS  Google Scholar 

  17. Wu FC, Tseng RL, Juang RS (2001) Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res 35:613–618

    Article  CAS  Google Scholar 

  18. Shaw MJ, Nesterenko PN, Dicinoski GW, Haddad PR (2003) J. Chromatogr, Retention characteristics of lanthanide ions on a mixed phosphonic acid-carboxylic acid cation exchanger. Aust J Chem 56:201–206

    Article  CAS  Google Scholar 

  19. Pramanik S, Dhara PK, Chattopadhyay P (2004) A resin containing bis(2-benzimidazo-lylmethyl)amine: synthesis and metal-ion uptake properties suitable for analytical application. Talanta 63:485–490

    Article  CAS  Google Scholar 

  20. Stair JL, Holcombe JA (2007) Metal binding characterization and conformational studies using Raman microscopy of resin-bound poly(aspartic acid). Anal Chem 79:1999–2006

    Article  CAS  Google Scholar 

  21. Yeom BY, Lee CS, Hwang TS (2009) A new hybrid ion exchanger: effect of system parameters on the adsorption of vanadium(V). J Hazard Mater 166:415–420

    Article  CAS  Google Scholar 

  22. Zhou L, Wang Y, Liu Z, Huang Q (2009) Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater 161:995–1002

    Article  CAS  Google Scholar 

  23. Abderrahim O, Didi MA, Villemin D (2009) A new sorbent for uranium extraction: polyethyleniminephenylphosphonamidic acid. J Radioanal Nucl Chem 279:237–244

    Article  CAS  Google Scholar 

  24. Wang P (2009) Carbon nanotubes using for recovery of radionuclides and separation of actinides and lanthanides. US 0093664 A1

  25. Hu MZC, Norman JM, Faison BD, Reeves M (1996) Biosorption of uranium by Pseudomonas aeruginosa strain CSU: characterization and comparison studies. Biotechnol Bioeng 51:237–247

    Article  Google Scholar 

  26. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  27. Oliveira FM, Somera BF, Corazza MZ (2011) Cellulose microfiber functionalized with N,N′-bis (2-aminoethyl)-1,2-ethanediamine as a solid sorbent for the fast preconcentration of Cd(II) in flow system analysis. Talanta 85:2417–2424

    Google Scholar 

  28. Weber WJ, Morris JC, Sanit J (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div Am Soc Civ Eng 89:31–60

    Google Scholar 

  29. Liu L, Li C, Bao C, Jia Q, Xiao P, Liu X, Zhang Q (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93:350–357

    Article  CAS  Google Scholar 

  30. Kannan N, Meenakshisundaram M (2002) Adsorption of congo red on various activated carbons. Water Air Soil Pollut 138:289–305

    Article  CAS  Google Scholar 

  31. Crank J (1979) The mathematics of diffusion. Carlendan Press, Oxford, London, pp 23–139

    Google Scholar 

  32. Tewari N, Vasudevan P, Guha BK (2005) Study on biosorption of Cr(VI) by Mucor hiemalis. Biochem Eng J 23:185–192

    Article  CAS  Google Scholar 

  33. Subbaiah MV, Vijaya Y, Reddy AS, Yuvaraja G, Krishnaiah A (2011) Equilibrium, kinetic and thermodynamic studies on the biosorption of Cu(II) onto Trametes versicolor biomass. Desalination 276:310–316

    Article  CAS  Google Scholar 

  34. Gode F, Pehlivan E (2003) A comparative study of two chelating ion-exchange resins for the removal of chromium(III) from aqueous solution. J Hazard Mater 100:231–243

    Article  CAS  Google Scholar 

  35. Donia AM, Atia AA, El-Boraey H, Mabrouk DH (2006) Uptake studies of copper(II) on glycidyl methacrylate chelating resin containing Fe2O3 particles. Sep Purif Technol 49:64–70

    Article  CAS  Google Scholar 

  36. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum[J]. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  37. Raju SK, Subramanian MS (2007) Sequential separation of lanthanides, thorium and uranium using novel solid phase extraction method from high acidic nuclear wastes. J Hazard Mater 145:315–322

    Article  CAS  Google Scholar 

  38. Spiegler KS (1962) Salt–water purification. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

We acknowledge the Fundamental Research Funds for the Central Universities of Central South University (No. 2012zzts058) and the National Natural Science Foundation of China (No. 51074192) for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaochi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Q., Liu, Y., Kong, X. et al. Synthesis of phosphorus-modified poly(styrene-co-divinylbenzene) chelating resin and its adsorption properties of uranium(VI). J Radioanal Nucl Chem 298, 1137–1147 (2013). https://doi.org/10.1007/s10967-013-2500-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2500-4

Keywords

Navigation