Skip to main content
Log in

Removal of thorium from aqueous solution by adsorption using PAMAM dendron-functionalized styrene divinyl benzene

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Third generation poly(amido)amine (PAMAM) dendron was grown on the surface of styrene divinylbenzene (SDB) by divergent polymerization method. This new chelating resin (PAMAMG3-SDB) has been investigated in liquid–solid extraction of thorium. The effects of analytical parameters such as pH, contact time, concentration of thorium, resin dose and temperature on adsorption were investigated. Kinetic and isotherm studies of the adsorption were also carried out to understand the nature of adsorption of thorium on the chelating resin. Kinetic data followed a pseudo-second-order model and equilibrium data were best fitted with Langmuir model. The maximum adsorption capacity of thorium ions was determined to be 36.2 mg g−1 at 298 K. Thermodynamic parameters such as standard enthalpy, entropy, and free energy of adsorption of thorium on PAMAMG3-SDB were calculated as −10.498 kJ mol−1, 0.0493 kJ mol−1 K−1 and −25.208 kJ mol−1 respectively at 298 K from temperature dependent equilibrium data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baybaş D, Ulusoy U (2011) Appl Clay Sci 51:138–146

    Article  Google Scholar 

  2. Talip Z, Eral M, Hicsonmez U (2009) J Environ Radioact 100:139–143

    Article  CAS  Google Scholar 

  3. Anirudhan TS, Rijith S, Tharun AR (2010) Colloid Surf A 368:13–22

    Article  CAS  Google Scholar 

  4. Kaygun AK, Akyil S (2007) J Hazard Mater 147:357–362

    Article  CAS  Google Scholar 

  5. Singha Deb AK, Mohanty BN, Ilaiyaraja P, Sivasubramanian K, Venkatraman B (2012) J Radioanal Nucl Chem. doi:10.1007/s10967-012-1899-3

    Google Scholar 

  6. Yusan S, Gok C, Erenturk S, Aytas S (2012) Appl Clay Sci 67–68:106–116

    Article  Google Scholar 

  7. Metaxas M, Kasselouri-Rigopoulou V, Galiatsatou P, Konstantopoulou C, Oikonomou D (2003) J Hazard Mater 97:71–82

    Article  CAS  Google Scholar 

  8. Chen L, Gao X (2009) Appl Radiat Isot 67:1–6

    Article  CAS  Google Scholar 

  9. Guo Z, Yu X, Guo F, Tao Z (2005) J Colloid Interface Sci 288:14–20

    Article  CAS  Google Scholar 

  10. Kutahyal C, Eral M (2010) J Nucl Mater 396:251–256

    Article  Google Scholar 

  11. Gok C, Turkozu DA, Aytas S (2011) J Radioanal Nucl Chem 287:533–541

    Article  CAS  Google Scholar 

  12. Guerra DL, Viana RR, Airoldi C (2009) J Hazard Mater 168:504–1511

    Article  Google Scholar 

  13. Qadeer R, Hanif J, Hanif I (1995) J Radioanal Nucl Chem 190(1):112–130

    Article  Google Scholar 

  14. Ozay O, Ekici S, Aktas N, Sahiner N (2011) J Environ Manag 92:3121–3129

    Article  CAS  Google Scholar 

  15. Nakajima A, Tsuruta T (2004) J Radioanal Nucl 260(1):13–18

    Article  CAS  Google Scholar 

  16. Gao B, Gao Y, Li Y (2010) Chem Eng J 158:542–549

    Article  CAS  Google Scholar 

  17. Fuqiang A, Gao B (2007) J Hazard Mater 145:495–500

    Article  Google Scholar 

  18. Sadeghi S, Sheikhzadeh E (2009) J Hazard Mater 163:861–868

    Article  CAS  Google Scholar 

  19. Metilda P, Sanghamitra K, Gladis JM, Naidu GRK, Rao TP (2005) Talanta 65:192–200

    CAS  Google Scholar 

  20. Trivedi UV, Menon SK, Agrawal YK (2002) React Funct Polym 50:205–216

    Article  CAS  Google Scholar 

  21. Quintelas C, Rocha Z, Silva B, Fonseca B, Figueiredo H, Tava T (2009) Chem Eng J 152:110–115

    Article  CAS  Google Scholar 

  22. Kosa SA, Al-Zhrani G, Abdel Salam M (2012) Chem Eng J 182:159–168

    Article  Google Scholar 

  23. Turanov AN, Karandashev VK, Yarkevich AN, Safronova ZV, Tkachav AG (2011) Radiokhimiya 53:325–329

    Google Scholar 

  24. Gupta SC, Dass P, Sharinab P, Singhb AV, Gupta S (2002) Desalination 143:141–145

    Article  CAS  Google Scholar 

  25. Sun X, Huang X, Liao XP, Shi B (2010) J Hazard Mater 179:295–302

    Article  CAS  Google Scholar 

  26. Hosseini MS, Bandegharaei AH (2011) J Hazard Mater 190:755–765

    Article  CAS  Google Scholar 

  27. Jain VK, Handa A, Sait SS, Shrivastav P, Agrawal YK (2001) Anal Chim Acta 429:237–246

    Article  CAS  Google Scholar 

  28. Metilda P, Gladis JM, Rao TP (2004) Radiochim Acta 92:931–937

    Article  CAS  Google Scholar 

  29. Metilda P, Gladis JM, Rao TP (2003) Radiochim Acta 91:737–741

    Article  CAS  Google Scholar 

  30. Dev K, Pathak R, Rao GN (1999) Talanta 48:579–584

    Article  CAS  Google Scholar 

  31. Demirel N, Merdivan M, Pirinccioglu N, Hamanci C (2003) Anal Chim Acta 485:213

    Article  CAS  Google Scholar 

  32. Prabhakaran D, Subramanian MS (2003) Talanta 61(4):423–430

    Article  CAS  Google Scholar 

  33. Ansari SA, Mohapatra PK, Manchanda VK (2009) J Hazard Mater 161:1323–1329

    Article  CAS  Google Scholar 

  34. Prabhakaran D, Subramanian MS (2003) Anal Lett 36:2277–2289

    Article  CAS  Google Scholar 

  35. Prabhakaran D, Subramanian MS (2005) Talanta 65:179–184

    CAS  Google Scholar 

  36. Jain VK, Pandya RA, Pillai SG, Shrivastav PS (2006) Talanta 70(2):257–266

    Article  CAS  Google Scholar 

  37. Raju ChSK, Subramanian MS (2005) Microchim Acta 150:297–304

    Article  CAS  Google Scholar 

  38. Killat GR, Tomalia DA (1989) US Patent No: 4871779

  39. Lagergren S (1898) Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39

    Google Scholar 

  40. Ho YS, McKay G (1998) Trans IchemE 76(B):313–318

    CAS  Google Scholar 

  41. Chien SH, Clayton WR (1980) Soil Sci Soc Am J 44:265–268

    Article  CAS  Google Scholar 

  42. Weber WJ, Morris JC (1963) J Sanit Eng Div Am Soc Civ Eng 89:31–59

    Google Scholar 

  43. Allen SJ, Mckay G, Porter JF (2004) J Colloid Interface Sci 280:322–333

    Article  CAS  Google Scholar 

  44. Asgari G, Roshani B, Ghanizadeh G (2012) J Hazard Mater 217–218:123–132

    Article  Google Scholar 

  45. Zhao DL, Feng SJ, Chen CL, Chen SH, Xu D, Wang XK (2008) Appl Clay Sci 41:17–23

    Article  CAS  Google Scholar 

  46. Anirudhan TS, Rejeena SR (2011) Ind Eng Chem Res 50:13288–13298

    Article  CAS  Google Scholar 

  47. Wang H, Ma L, Cao K, Geng J, Liu J, Song Q, Yang X, Li S (2012) J Hazard Mater 229–230:321–330

    Article  Google Scholar 

  48. Liu Y, Yuan L, Yuan Y, Lan J, Li Z, Feng Y, Zhao Y, Chai Z, Shi W (2012) J Radioanal Nucl Chem 292:803–810

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Shri S. C. Chetal, Director, IGCAR for his constant encouragement. The authors thank Shri H. Krishnan, Shri B.N. Mohanty and Shri Shailesh Joshi, RSD, IGCAR for their help during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ilaiyaraja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilaiyaraja, P., Deb, A.K.S., Sivasubramanian, K. et al. Removal of thorium from aqueous solution by adsorption using PAMAM dendron-functionalized styrene divinyl benzene. J Radioanal Nucl Chem 297, 59–69 (2013). https://doi.org/10.1007/s10967-012-2402-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2402-x

Keywords

Navigation