Skip to main content
Log in

Biodistribution of multi-walled carbon nanotubes functionalized by hydroxyl terminated poly(ethylene glycol) in mice

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Poly(ethylene glycol) functionalized carbon nanotubes (CNTs-PEG) have attracted great research interest due to their good biocompatibility and wide applications in biomedical areas, such as drug delivery, bioimaging and photothermal therapy. The biodistribution studies are fundamental and essential to the biomedical applications and toxicological evaluations of CNTs-PEG, while isotopic labeling is the most adopted method for the quantitation of CNTs in vivo. Herein, we studied the biodistribution of hydroxyl terminated CNTs-PEG (CNTs-PEG-OH) in mice using 125I-labeling technique. The blood concentrations and accumulation levels of CNTs-PEG-OH in different organs were quantitatively analyzed by detecting the radioactivity of 125I labeled on CNTs-PEG-OH. The results indicated that CNTs-PEG-OH were quickly cleared from blood circulation and distributed to the entire body, except brain. CNTs-PEG-OH were mainly sequestrated by liver after intravenous injection. The hepatic accumulation decreased along with time elapse. Prolonging the PEG chains led to the decrease of hepatic accumulation, while the biodistribution pattern was similar. The implications to the biomedical applications and safety evaluations of CNTs-PEG are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23:646–657

    Article  CAS  Google Scholar 

  2. Lu F, Gu L, Meziani MJ (2009) Advances in bioapplications of carbon nanotubes. Adv Mater 21:139–152

    Article  CAS  Google Scholar 

  3. Thakare VS, Das M, Jain AK, Patil S, Jain S (2010) Carbon nanotubes in cancer theragnosis. Nanomedicine 5:1277–1301

    Article  CAS  Google Scholar 

  4. Vashist SK, Zheng D, Pastorin G et al (2011) Delivery of drugs and biomolecules using carbon nanotubes. Carbon 49:4077–4097

    Article  CAS  Google Scholar 

  5. Liu Z, Chen K, Davis C et al (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652–6660

    Article  CAS  Google Scholar 

  6. Keren S, Zavaleta C, Cheng Z et al (2008) Noninvasive molecular imaging of small living subjects using Raman spectroscopy. Proc Natl Acad Sci USA 105:5844–5849

    Article  CAS  Google Scholar 

  7. Moon HK, Lee SH, Choi HC (2009) In vivo near-infrared mediated tumor destruction by photothermal effect of carbon nanotubes. ACS Nano 3:3707–3713

    Article  CAS  Google Scholar 

  8. Welsher K, Sherlock SP, Dai H (2011) Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci USA 108:8943–8948

    Article  CAS  Google Scholar 

  9. Yang S-T, Luo J, Zhou Q, Wang H (2012) Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics 2:271–282

    Article  CAS  Google Scholar 

  10. Liu J-H, Yang S-T, Wang HF, Liu Y (2010) Advances in biodistribution study and tracing methodology of carbon nanotubes. J Nanosci Nanotechnol 10:8469–8481

    Article  CAS  Google Scholar 

  11. Yang S-T, Fernando KAS, Liu J-H et al (2008) Covalently PEGylated carbon nanotubes with stealth character in vivo. Small 4:940–944

    Article  CAS  Google Scholar 

  12. Liu Z, Davis C, Cai W et al (2008) Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci USA 105:1410–1415

    Article  CAS  Google Scholar 

  13. Owens DE III, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 300:93–102

    Article  Google Scholar 

  14. Yang S-T, Wang H, Wang Y et al (2011) Removal of carbon nanotubes from aqueous environment with filter paper. Chemosphere 82:621–626

    Article  CAS  Google Scholar 

  15. Sun Y-P, Huang W, Lin Y et al (2001) Soluble dendron-functionalized carbon nanotubes: preparation, characterization, and properties. Chem Mater 13:2864–2869

    Article  CAS  Google Scholar 

  16. Deng X, Yang S-T, Nie H, Wang H, Liu Y (2008) A generally adoptable radiotracing method for tracking carbon nanotubes in animals. Nanotechnology 19:075101

    Article  Google Scholar 

  17. Faure AC, Dufort S, Josserand V et al (2009) Control of the in vivo biodistribution of hybrid nanoparticles with different poly(ethylene glycol) coatings. Small 5:2565–2575

    Article  CAS  Google Scholar 

  18. Geng Y, Dalhaimer P, Cai S et al (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249–255

    Article  CAS  Google Scholar 

  19. Landsiedel R, Ma-Hock L, Kroll A et al (2010) Testing metal-oxide nanomaterials for human safety. Adv Mater 22:2601–2627

    Article  CAS  Google Scholar 

  20. Gref R, Luck M, Quellec P et al (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 18:301–313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the China Ministry of Science and Technology (973 Project No. 2011CB933402), the China Natural Science Foundation (Nos. 21071094 and 20871010), Shanghai Municipal Education Committee (11ZZ82) and the Fundamental Research Funds for the Central Universities, Southwest University for Nationalities (No. 11NZYBS06)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifang Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10967_2012_1901_MOESM1_ESM.pdf

Supplementary material 1 (PDF 77 kb). TEM image of MWCNTs-PEG20000-OH; (2) the biodistribution of 125I-MWCNT-PEG4000-OH and Na125I in mice after intravenous injection

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, ST., Wang, YW., Liu, JH. et al. Biodistribution of multi-walled carbon nanotubes functionalized by hydroxyl terminated poly(ethylene glycol) in mice. J Radioanal Nucl Chem 295, 1181–1186 (2013). https://doi.org/10.1007/s10967-012-1901-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1901-0

Keywords

Navigation