Skip to main content
Log in

Comparative study of strontium adsorption on dioctahedral and trioctahedral smectites

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Slovak bentonites characterized by good rheological, mineralogical and chemical stability are considered as suitable sealing barriers for construction of Slovak deep geological repository for high-level radioactive waste and spent nuclear fuel. There is several Slovak bentonite deposits, bentonites of which have appropriate adsorption properties meeting the geotechnical requirements for this type of barriers. Study of adsorption properties of bentonites (mainly smectites) is an essential step for developing the migration model long-lived corrosion and activation products, and fission products of uranium. Nuclear wastes contain the most important nuclear fission products, β-emitter 90Sr with long half-life, biological half-life and high mobility. The present paper investigates and compares the strontium adsorption properties of bentonites of different mineral composition consisted mainly of dioctahedral and trioctahedral smectites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Adamcová R, Haasová Z (2005) Vybrané fyzikálne vlastnosti bentonitu pre úložisko rádioaktívneho odpadu. Mineralia Slovaca 37(3):387–389

    Google Scholar 

  2. Chmielewská E, Kuruc J (2008) Odpady. Nakladanie s tuhým neaktívnym a rádioaktívnym odpadom. Univerzita Komenského, Bratislava

  3. Adamcová R, Frankovská J, Drmeková T (2009) Engineering geological clay research for a radioactive waste repository in Slovakia. Acta geologica slovaca 1(2):71–82

    Google Scholar 

  4. Galamboš M, Rosskopfová O, Kufčáková J, Rajec P (2011) Utilization of Slovak bentonites in deposition of high-level radioactive waste and spent nuclear fuel. J Radioanal Nucl Chem 288(3):765–777

    Article  Google Scholar 

  5. Meunier A, Velde B, Griffault L (1998) The reactivity of bentonites: a review. An application to clay barrier stability for nuclear waste storage. Clay Miner 33:187–196

    Article  CAS  Google Scholar 

  6. Stríček I, Šucha V, Uhlík P, Madejová J, Galko I (2009) Mineral stability of Fe-rich bentonite in the Mock-Up-CZ experiment. Geol Carpath 60(5):431–436

    Article  Google Scholar 

  7. Kolaříková I, Švandová J, Přikryl R, Vinšová H, Jedináková-Křižová V, Zeman J (2010) Mineralogical changes in bentonite barrier within Mock-Up-CZ experiment. Appl Clay Sci 47(1–2):10–15

    Article  Google Scholar 

  8. Lee JO, Kang IM, Cho WJ (2010) Smectite alteration and its influence on the barrier properties of smectite clay for a repository. Appl Clay Sci 47(1–2):99–104

    Article  CAS  Google Scholar 

  9. Jedináková-Křížová V, Zeman J, Vinšová H, Hanslík E (2010) Bentonite stability, speciation and migration behaviour of some critical radionuclides. J Radioanal Nucl Chem 286:719–727

    Article  Google Scholar 

  10. Deepthi Rani R, Sasidhar P (2012) Geochemical and thermodynamic aspects of sorption of strontium on kaolinite dominated clay samples at Kalpakkam. Environ Earth Sci 65(4):1265–1274

    Article  CAS  Google Scholar 

  11. Sparks DL (2003) Environmental soil chemistry. Academic Press, London

    Google Scholar 

  12. Meunier A (2005) Clays. Springer, Berlin

    Google Scholar 

  13. Mockovčiaková A, Orolínová Z (2009) Adsorption properties of modified bentonite clay. Cheminé Technologija 1(50):47–50

    Google Scholar 

  14. Galamboš M, Rosskopfová O, Paučová V, Rajec P, Adamcová R (2010) Sorpčné vlastnosti bentonitových bariér. Bezpečnost jaderné energie 18(56)1/2: 37–39

  15. Melichová Z, Hromada L, Brtáňová A (2010) Štúdium sorpčných vlastností bentonitu z ložiska Lieskovec. Acta Universitatis Matthiae Belli Ser Chem 12:15–23

    Google Scholar 

  16. Mockovčiaková A, Orolínová Z, Škvarla J (2010) Enhancement of the bentonite properties. J Hazard Mater 180:274–281

    Article  Google Scholar 

  17. Jesenák K (2012) Exkurzia po miestach ťažby a spracovania anorganických surovín na Slovensku. Univerzita Komenského, Bratislava

    Google Scholar 

  18. Galamboš M, Suchánek P, Rosskopfová O Sorption of antropogenic radionuclides on natural and synthetic inorganic sorbents. J Radioanal Nucl Chem. doi:10.1007/s10967-012-1717-y

  19. Gregor M, Číčel B (1969) Bentonit a jeho využite. SAV, Bratislava

    Google Scholar 

  20. Šucha V (2001) Íly v geologických procesoch. Acta Geologica, Universitas Comenianae, Bratislava

  21. Andrejkovičová S, Madejová J, Czímerová A, Galko I, Dohrmann R, Komadel P (2006) Mineralogy and chemistry of Fe-rich bentonite from the Lieskovec deposit (Central Slovakia). Geol Carpath 57(5):371–378

    Google Scholar 

  22. Andrejkovičová S, Janotka I, Komadel P (2008) Evaluation of geotechnical properties of bentonite from Lieskovec deposit, Slovakia. Appl Clay Sci 38(2–4):297–303

    Article  Google Scholar 

  23. Rajec P, Mátel L, Orechovská J, Šúcha J, Novák I (1996) Sorption of radionuclides on inorganic sorbents. J Radioanal Nucl Chem Art 208(2):477–486

    Article  CAS  Google Scholar 

  24. Tsai S-Ch, Juang K-W (2000) Comparison of linear and nonlinear forms of isotherm models for strontium sorption on a sodium bentonite. J Radioanal Nucl Chem 243(3):741–746

    Article  CAS  Google Scholar 

  25. Přikryl R, Ryndová T, Boháč J, Weishauptová Z (2003) Microstructures and physical properties of “backfill” clays: comparison of residual and sedimentary montmorillonite clays. Appl Clay Sci 23(1–4):149–156

    Article  Google Scholar 

  26. Andrejkovičová S, Pentrák M, Jankovič Ľ, Komadel P (2010) Sorption of heavy metal cations on rhyolitic and andesitic bentonites from Central Slovakia. Geol Carpath 61(2):163–171

    Article  Google Scholar 

  27. Wang J, Zuo R, Teng Y, Hu Q, Sun Z (2010) Sorption of strontium and fractal scaling of the heterogeneous media in a candidate VLLW disposal site. J Radioanal Nucl Chem 283(2):319–328

    Article  CAS  Google Scholar 

  28. Uğur FA, Turban Ş (2011) Experimental investigation of radiocesium sorption on ceramic clay using a batch method. J Radioanal Nucl Chem 288(2):347–350

    Article  Google Scholar 

  29. Kasap S, Tel H, Piskin S (2011) Preparation of TiO2 nanoparticles by sonochemical method, isotherm, thermodynamic and kinetic studies on the sorption of strontium. J Radioanal Nucl Chem 289(2):489–495

    Article  CAS  Google Scholar 

  30. Selvakumar R, Aravindh S, Kaushik CP, Katarani VG, Thorat VS, Gireesan P, Jayavignesh V, Swaminathan K, Raj K (2011) Screening of silver nanoparticles containing carbonized yeast cells for adsorption of few long-lived active radionuclides. J Radioanal Nucl Chem 288(2):629–633

    Article  CAS  Google Scholar 

  31. Bromberg L, Straut CM, Centrone A, Wilusz E, Hatton TA (2011) Montmorillonite functionalized with pralidoxime as a material for chemical protection against organophosphorous compounds. ACS Appl Mater Interfaces 3(5):1479–1484

    Article  CAS  Google Scholar 

  32. Tsai S-Ch, Ouyang S, Hsu Ch-N (2000) Sorption and diffusion behavior of Cs and Sr on Jih-Hsing bentonite. Appl Radiat Isotop 54:209–215

    Article  Google Scholar 

  33. Vereš J, Orolínová Z (2009) Study of the treated and magnetically modified bentonite as possible sorbents of heavy metals. Acta Montanistica Slovaca 14(2):152–155

    Google Scholar 

  34. Tel H, Altas Y, Eral M, Sert S, Cetinakaya B, Inan S (2010) Preparation of ZrO2 and ZrO2–TiO2 microspheres by the sol–gel method and an experimental design approach to their strontium adsorption behaviours. Chem Eng J 161:151–160

    Article  CAS  Google Scholar 

  35. Jansson M, Jonsson M, Mohlén J (2010) Kinetic evaluation of sorption and desorption. Adsorption 16:155–159

    Article  CAS  Google Scholar 

  36. Inan S, Altas Y (2011) Preparation of zirconium–manganese oxide/polyacrylonitrile (Zr–Mn oxide/PAN) composite spheres and the investigation of Sr(II) sorption by experimental design. Chem Eng J 168(3):1263–1271

    Article  CAS  Google Scholar 

  37. Yıldız B, Erten HN, Kış M (2011) The sorption behavior of Cs+ ion on clay minerals and zeolite in radioactive waste management: sorption kinetics and thermodynamics. J Radioanal Nucl Chem 288(2):475–483

    Article  Google Scholar 

  38. Butkus D, Kleiza J (2011) Adsorption of 85Kr radioactive inert gas into hardening mixtures. J Radioanal Nucl Chem 287(1):247–254

    Article  CAS  Google Scholar 

  39. Chen Y, Wang J (2012) Removal of radionuclide Sr2+ ions from aqueous solution using synthetized magnetic chitosan beads. Nucl Eng Design 242:445–451

    Article  CAS  Google Scholar 

  40. Brtáňová A, Melichová Z, Komadel P (2012) Sorption of Cu2+ from aqueous solution by Slovak bentonites. Ceram Silik 56(1):55–60

    Google Scholar 

  41. Pushkareva R, Kalinichenko E, Lytovchenko A, Pushkarev A, Kadochnikov V, Plastynina M (2002) Irradiation effect on physico-chemical properties of clay minerals. Appl Clay Sci 21:117–123

    Article  CAS  Google Scholar 

  42. Plötze M, Kahr G, Hermanns SR (2003) Alteration of clay minerals—gamma-irradiation effects on physicochemical properties. Appl Clay Sci 23:195–202

    Article  Google Scholar 

  43. Sorieul S, Allard T, Wang LM, Grambin-Lapeyre C, Lian J, Calas G, Ewing RC (2008) Radiation-stability of smectite. Environ Sci Technol 42(22):8407–8411

    Article  CAS  Google Scholar 

  44. Allard T, Calas G (2009) Radiation effects on clay mineral properties. Appl Clay Sci 43:143–149

    Article  CAS  Google Scholar 

  45. Holmboe M, Norrfors K, Jonsson M, Wold S (2011) Effect of γ-radiation on radionuclide retention in compacted bentonite. Radiat Phys Chem 80(12):1371–1377

    Article  CAS  Google Scholar 

  46. Galamboš M, Daňo M, Rosskopfová O, Šeršeň F, Kufčáková J, Adamcová R, Rajec P (2012) Effect of gamma-irradiation on adsorption properties of Slovak bentonites. J Radioanal Nucl Chem. doi:10.1007/s10967-012-1638-9

  47. Dyer A, Chow JKK, Umar IM (2000) The uptake of caesium and strontium radioisotopes onto clays. J Mater Chem 10:2734–2740

    Article  CAS  Google Scholar 

  48. Gu BX, Wang LM, Minc LD, Ewing RC (2001) Temperature effects on the radiation stability and ion exchange capacity of smectites. J Nucl Mater 297:345–354

    Article  CAS  Google Scholar 

  49. Ouhadi VR, Yong RN, Goodarzi AR, Safari-Zanjani M (2010) Effect of temperature on the re-structuring of the microstructure and geo-environmental behaviour of smectite. Appl Clay Sci 47(1–2):2–9

    Article  CAS  Google Scholar 

  50. Přikryl R, Weishauptová Z (2010) Hierarchical porosity of bentonite-based buffer and its modification due to increased temperature and hydration. Appl Clay Sci 47(1–2):163–170

    Article  Google Scholar 

  51. Perdrial JN, Warr LN, Perdrial N, Lett M-C, Elsass F (2009) Interaction between smectite and bacteria: implications for bentonite as backfill material in the disposal of nuclear waste. Chem Geol 264(1–4):281–294

    Article  CAS  Google Scholar 

  52. Liang T-J, Hsu Ch-N, Liou D-Ch (1993) Modified freundlich Sorption of cesium and Strontium on Wyoming Bentonite. Appl Radiat Isot 44(9):1205–1208

    Article  CAS  Google Scholar 

  53. Wang X, Tan X, Chen Ch, Chen L (2005) The concentration and pH dependent diffusion of 137Cs in compacted bentonite by using capillary method. J Nucl Mater 345:184–191

    Article  CAS  Google Scholar 

  54. Tsukamoto M, Fujita T (2006) Sorption and diffusion behaviours of strontium in sodium-type bentonite bed. Czechoslovak J Phys 56:D119–D128

    CAS  Google Scholar 

  55. Galamboš M, Kufčáková J, Rajec P (2009) Adsorption of cesium on domestic bentonites. J Radioanal Nucl Chem 281(3):485–492

    Article  Google Scholar 

  56. Kufčáková J, Galamboš M, Rajec P (2005) Sorption of strontium on selected group of bentonites. ChemZi 1(1):270

    Google Scholar 

  57. Solecki J, Michalik S (2006) Studies of 85Sr adsorption on grain fractions of soil. J Radioanal Nucl Chem 267(2):271–278

    Article  CAS  Google Scholar 

  58. Setiawan B (2007) Effect of Ca ions in solution to Cs-137 sorption into soil samples. J Waste Manage Technol 10(2):32–35

    Google Scholar 

  59. Galamboš M, Kufčáková J, Rajec P (2009) Sorption of strontium on Slovak bentonites. J Radioanal Nucl Chem 281(3):347–357

    Article  Google Scholar 

  60. Joo P, Antal K (1998) Transport processes in clay and humate treated clay layers: an electrochemical and radioabsorption survey. Colloids Surf A 141:365–377

    Article  CAS  Google Scholar 

  61. Macášek F, Shaban IS, Mátel Ľ (1999) Cesium, strontium, europium (III) and plutonium (IV) complexes with humic acid in solution and on montmorillonite surface. J Radioanal Nucl Chem 241(3):627–636

    Article  Google Scholar 

  62. Zhang ML, Ren A, Shao D, Wang X (2006) Effect of fulvic acid and ionic strength on the sorption of radiostrontium on Chinese calcareous soil and its solid components. J Radioanal Nucl Chem 268(1):33–36

    Article  CAS  Google Scholar 

  63. Galamboš M, Kufčáková J, Rosskopfová O, Rajec P (2010) Adsorption of cesium and strontium on natrified bentonites. J Radioanal Nucl Chem 283(3):803–813

    Article  Google Scholar 

  64. Frankovská J, Andrejkovičová S, Janotka I (2010) Effect of NaCl on hydraulic properties of bentonite and bentonite-palygorskite mixture. Geosynth Int 17(4):250–259

    Article  Google Scholar 

  65. Vokál A, Vopálka D, Večerník P (2010) An approach for acquiring data for description of diffusion in safety assessment of radioactive waste repositories. J Radioanal Nucl Chem 286(3):751–757

    Article  Google Scholar 

  66. Osacký M, Honty M, Madejová J, Bakas T, Šucha V (2009) Experimental interactions of Slovak bentonites with metallic iron. Geol Carpath 60(6):535–543

    Article  Google Scholar 

  67. Osacký M, Šucha V, Czímerová J, Madejová J (2010) Reaction of smectites with iron in a nitrogen atmosphere at 75 C. Appl Clay Sci 50(2):237–244

    Article  Google Scholar 

  68. Choi S, Crosson G, Mueller KT, Seraphin S, Chorover J (2005) Clay mineral weathering and contaminant dynamics in a caustic aqueous system II. Mineral transformation and microscale partitioning. Geochim Cosmochim Acta 69(18):4437–4451

    Article  CAS  Google Scholar 

  69. Nemes Z, Nagy NM, Komlósi A, Kónya J (2006) The effect of mineral composition on the interaction of strontium ions with geological fomartions. Appl Clay Sci 32:172–178

    Article  CAS  Google Scholar 

  70. Bascetin E, Atun G (2006) Adsorption behavior of strontium on binary mineral mixtures of Montmorillonite and Kaolinite. Appl Radiat Isot 64:957–964

    Article  CAS  Google Scholar 

  71. Al-Rayyes AH, Al-Oudat M, Al-Hamwi A, Mukhallalati H (2007) Behavior of 134Cs, 90Sr, and 238Pu in different Syrian soils. J Radioanal Nucl Chem 274(1):139–143

    Article  CAS  Google Scholar 

  72. Palágyi Š, Štamberg K, Vodičková H (2010) Transport and sorption of 85Sr and 125I in crushed crystalline rocks under dynamic flow conditions. J Radioanal Nucl Chem 283(3):629–636

    Article  Google Scholar 

  73. McKay HAC (1971) Principles of radiochemistry. Butterworths, London

    Google Scholar 

  74. Navrtáil O, Hála J, Kopunec R, Lešetický L, Macášek F, Mikulaj V (1985) Jaderná chemie. Academia, Praha

    Google Scholar 

  75. Baik MH, Kim SS, Lee JK, Lee SY, Kim GY, Yun ST (2010) Sorption of 14C, 99Tc, 137Cs, 90Sr, 63Ni, and 241Am onto a rock and a fracture-filling material from the Wolsong low- and intermediate-level radioactive waste repository, Gyeongju, Korea. J Radioanal Nucl Chem 283(2):337–345

    Article  CAS  Google Scholar 

  76. Kekki T, Rosenber RJ, Jaakkola T (1997) Physico-chemical forms of radiostrontium in simulated freshwaters. J Radioanal Nucl Chem 224(1–2):77–81

    Article  CAS  Google Scholar 

  77. Jenne EA (1998) Adsorption of metals by geomedia. Academic Press, San Diego

    Google Scholar 

  78. Tolgyessy J, Harangozó M (2000) Rádioekológia. Matej Bel University—Faculty of Natural Sciences, Banská Bystrica

  79. Costanzo PM (2001) Baseline studies of the clay mineral society source clays: introduction. Clays Clay Miner 49(5):372–373

    Article  CAS  Google Scholar 

  80. Moll WF (2001) Baseline studies of the clay minerals society source clays: geological origin. Clays Clay Miner 49(5):374–380

    Article  CAS  Google Scholar 

  81. Mermut A, Cano AF (2001) Baseline studies of the clay minerals society source clays: chemical analyses of major elements. Clays Clay Miner 49(5):381–386

    Article  CAS  Google Scholar 

  82. Borden D, Giese RF (2001) Baseline studies of the clay minerals society source clays: cation exchange capacity measurements by the ammonia-electrode method. Clays Clay Miner 49(5):444–445

    Article  CAS  Google Scholar 

  83. Source clay physical/chemical data: http://www.agry.purdue.edu/cjohnston/sourceclays/chem.htm

  84. Eberl DD (2003) User’s guide to RockJock—a computer program for determining quantitative mineralogy from powder X-ray diffraction data. US Geological Survey Open-File Report 03–78, 47

  85. Galamboš M, Paučová V, Kufčáková J, Rosskopfová O, Rajec P, Adamcová R (2010) Cesium sorption on bentonites and Montmorillonite K10. J Radioanal Nucl Chem 284(1):55–64

    Article  Google Scholar 

  86. Jaynes WF, Bigham JM (1986) Multiple cation-exchange capacity measurements of standard clays using a commercial mechanical extractor. Clays Clay Miner 34(1):93–98

    Article  CAS  Google Scholar 

  87. Choi J-W, Whang J-H, Chun K-S (1991) Applicability of domestic bentonite as a buffer material of spent fuel repository. J Korean Nucl Soc 23(4):410–419

    Google Scholar 

  88. Khan SA, Rehman RU, Khan MA (1996) Sorption of strontium bentonites. Waste Manag 15(8):641–650

    Article  Google Scholar 

  89. Konoplev AV, Bulgakov AA (2000) 90Sr and 137Cs exchange distribution coefficient in soil-water systems. At Energ 88(2):158–163

    Article  CAS  Google Scholar 

  90. Nemes Z, Nagy NM, Kónya J (2005) Kinetics of strontium ion adsorption on natural clay samples. J Radioanal Nucl Chem 266(2):289–293

    Article  CAS  Google Scholar 

  91. Jedináková-Křížová V, Hanslík E, Vinšová H (2006) Quality assessment of hydrosphere in the vicinity of Czech nuclear power plants by radioanalytical methods. J Radioanal Nucl Chem 269(3):747–753

    Article  Google Scholar 

  92. Missana T, García-Gutiérrez M (2007) Adsorption of bivalent ions (Ca(II), Sr(II) and Co(II)) onto FEBEX bentonite. Phys Chem Earth 32:559–567

    Article  Google Scholar 

  93. Missana T, Garcia-Gutierrez M, Alonso U (2008) Sorption of strontium onto illite/smectite mixed clays. Phys Chem Earth 33:S156–S162

    Article  Google Scholar 

  94. Valderrama C, Giménez J, de Pablo J, Martínez M (2011) Transport of strontium through a Ca-bentonite (Almería, Spain) and comparison with MX-80 Na-bentonite: experimental and modelling. Water Air Soil Pollut 214(1–4):1–8

    Google Scholar 

  95. Galamboš M, Rosskopfová O, Rajec P (2011) Geotechnické požiadavky na bentonitové bariéry v hlbinných úložiskách pre rádioaktívny odpad a vyhoreté jadrové palivo. Bezpečnost jaderné energie 19(57) 7/8: 38–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Galamboš.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galamboš, M., Osacký, M., Rosskopfová, O. et al. Comparative study of strontium adsorption on dioctahedral and trioctahedral smectites. J Radioanal Nucl Chem 293, 889–897 (2012). https://doi.org/10.1007/s10967-012-1752-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-1752-8

Keywords

Navigation