Skip to main content

Advertisement

Log in

Enhancement effect of acylated cellulose nanocrystals on waterborne polyurethane

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In this work, A new composite material composed of cellulose nanocrystals (CNCs) and waterborne polyurethane (WPU) was prepared. The thermal stability and mechanical properties of composites were studied. Compared with composites with CNCs without acylation treatment, the composites with modified CNCs by acylation reagents exhibited better thermal stability and mechanical properties. In addition, CNCs modified by butyric anhydride in composites demonstrated excellent mechanical properties. When 1.00% of CNCs modified by butyric anhydride were added to WPU, the fracture stress of the resulting composite material reached 52.15 MPa, which was 1262% higher than that of WPU (3.81 MPa), and 157% higher than that of the composite 1% CNCs without acylation treatment (20.31 MPa). This preparation of CNCs-WPU composites with better performance on thermal and mechanical properties provides guidelines for further improving the application of WPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Klinedinst DB, Yilgör E, Yilgör I, Beyer FL, Wilkes GL (2005) Structure-property behavior of segmented polyurethane urea copolymers based on an ethylene butylene soft segment. Polymer 46:10191–10201

    Article  CAS  Google Scholar 

  2. Lei W, Fang C, Zhou X, Li J, Yang R, Zhang Z, Liu D (2017) Thermal properties of polyurethane elastomer with different flexible molecular chain based on para-phenylene diisocyanate. J Mater Sci Technol 33:1424–1432

    Article  CAS  Google Scholar 

  3. Zhang C, Garrison TF, Madbouly SA, Kessler MR (2017) Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci 71:91–143

    Article  CAS  Google Scholar 

  4. Akindoyo JO, Beg MDH, Ghazali S, Islam MR, Jeyaratnam N, Yuvaraj AR (2016) Polyurethane types, synthesis and applications - a review. RSC Adv 6:114453–114482

    Article  CAS  Google Scholar 

  5. Noreen A, Zia KM, Zuber M, Tabasum S, Zahoor AF (2016) Bio-based polyurethane: An efficient and environment friendly coating systems: A review. Prog Org Coat 91:25–32

    Article  CAS  Google Scholar 

  6. Solanki A, Das M, Thakore S (2018) A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications. Carbohyd Polym 181:1003–1016

    Article  CAS  Google Scholar 

  7. Fu H,Wang Y, Chen W, Xiao J (2015) Reinforcement of waterborne polyurethane with chitosan-modified halloysite nanotubes. Appl Surf Sci 346:372–378

    Article  CAS  Google Scholar 

  8. Wang Z, Zhao S, Kang H, Zhang W, Li J, Zhang S, Huang A (2019) Reduction of energy consumption of green plywood production by implementing high-efficiency thermal conductive bio-adhesive: Assessment from pilot-scaled application. J Clean Prod 210:1366–1375

    Article  CAS  Google Scholar 

  9. Zhong X, Hu H, Fu H (2018) Self-cleaning, chemically stable, reshapeable, highly conductive nanocomposites for electrical circuits and flexible electronic devices. ACS Appl Mater Interfaces 10:25697–25705

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Yuan D, Li P, He C (2019) High conductive and mechanical robust carbon nanotubes/waterborne polyurethane composite films for efficient electromagnetic interference shielding. Compos A Appl Sci Manuf 121:411–417

    Article  CAS  Google Scholar 

  11. Espinach FX, Granda LA, Tarrés Q, Duran J, Fullana-i-Palmer P, Mutjé P (2017) Mechanical and micromechanical tensile strength of eucalyptus bleached fibers reinforced polyoxymethylene composites. Compos B Eng 116:333–339

    Article  CAS  Google Scholar 

  12. Saralegi A, Rueda L, Martin L, Arbelaiz A, Eceiza A, Corcuera MA (2013) From elastomeric to rigid polyurethane/cellulose nanocrystal bionanocomposites. Compos Sci Technol 88:39–47

    Article  CAS  Google Scholar 

  13. Sen R, Zhao B, Perea D, Itkis ME, Hu H, Love J, Bekyarova E, Haddon RC (2004) Preparation of single-walled carbon nanotube reinforced polystyrene and polyurethane nanofibers and membranes by electrospinning. Nano Lett 4:459–464

    Article  CAS  Google Scholar 

  14. Xia H, Song M (2005) Preparation and characterization of polyurethane–carbon nanotube composites. Soft Matter 1:386

    Article  CAS  PubMed  Google Scholar 

  15. McKinley GH, Liff SM, Kumar N (2007) High-performance elastomeric nanocomposites via solvent-exchange processing. Nat Mater 6:76–83

    Article  PubMed  CAS  Google Scholar 

  16. Cai D, Yusoh K, Song M (2009) The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite. Nanotechnology 20:085712

  17. Lei W, Zhou X, Fang C, Song Y, Li Y (2019) Eco-friendly waterborne polyurethane reinforced with cellulose nanocrystal from office waste paper by two different methods. Carbohyd Polym 209:299–309

    Article  CAS  Google Scholar 

  18. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7:303–315

    Article  CAS  Google Scholar 

  19. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: Chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  20. Kargarzadeh H, Mariano M, Huang J, Lin N, Ahmad I, Dufresne A, Thomas S (2017) Recent developments on nanocellulose reinforced polymer nanocomposites: A review. Polymer 132:368–393

    Article  CAS  Google Scholar 

  21. Benhamou K, Kaddami H, Magnin A, Dufresne A, Ahmad A (2015) Bio-based polyurethane reinforced with cellulose nanofibers: A comprehensive investigation on the effect of interface. Carbohyd Polym 122:202–211

    Article  CAS  Google Scholar 

  22. Cao X, Dong H, Li CM (2007) New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane. Biomacromol 8:899–904

    Article  CAS  Google Scholar 

  23. Saralegi A, Rueda L, Fernández-d’Arlas B, Mondragon I, Eceiza A, Corcuera MA (2013) Thermoplastic polyurethanes from renewable resources: effect of soft segment chemical structure and molecular weight on morphology and final properties. Polym Int 62:106–115

    Article  CAS  Google Scholar 

  24. Lin S, Huang J, Chang PR, Wei S, Xu Y, Zhang Q (2013) Structure and mechanical properties of new biomass-based nanocomposite: Castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal. Carbohyd Polym 95:91–99

    Article  CAS  Google Scholar 

  25. Mondragon G, Fernandes S, Retegi A, Peña C, Algar I, Eceiza A, Arbelaiz A (2014) A common strategy to extracting cellulose nanoentities from different plants. Ind Crops Prod 55:140–148

    Article  CAS  Google Scholar 

  26. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges. J Polym Sci Part B Polym Phys 52(12):791–806

    Article  CAS  Google Scholar 

  27. Moon RJ, AMJN. (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994

    Article  CAS  PubMed  Google Scholar 

  28. Sdrobiş A, Darie RN, Totolin M, Cazacu G, Vasile C (2012) Low density polyethylene composites containing cellulose pulp fibers. Compos B Eng 43:1873–1880

    Article  CAS  Google Scholar 

  29. De Menezes A Jr, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50:4552–4563

    Article  CAS  Google Scholar 

  30. Ho TTT, Zimmermann T, Hauert R, Caseri W (2011) Preparation and characterization of cationic nanofibrillated cellulose from etherification and high-shear disintegration processes. Cellulose 18:1391–1406

    Article  CAS  Google Scholar 

  31. Zhang J, Chen W, Feng Y, Wu J, Yu J, He J, Zhang J (2015) Homogeneous esterification of cellulose in room temperature ionic liquids. Polym Int 64:963–970

    Article  CAS  Google Scholar 

  32. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  PubMed  Google Scholar 

  33. Lönnberg H, Larsson K, Lindström T, Hult A, Malmström E (2011) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3:1426–1433

    Article  PubMed  CAS  Google Scholar 

  34. Çetin NS, Tingaut P, Özmen N, Henry N, Harper D, Dadmun M, Sèbe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9:997–1003

    Article  PubMed  CAS  Google Scholar 

  35. Habibi Y, Goffin A, Schiltz N, Duquesne E, Dubois P, Dufresne A (2008) Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerization. J Mater Chem 18:5002

    Article  CAS  Google Scholar 

  36. Ifuku S, Nogi M, Abe K, Handa K, Nakatsubo F, Yano H (2007) Surface modification of bacterial cellulose nanofibers for property enhancement of optically transparent composites: Dependence on acetyl-group DS. Biomacromol 8:1973–1978

    Article  CAS  Google Scholar 

  37. Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromol 11:454–464

    Article  CAS  Google Scholar 

  38. Peng SX, Shrestha S, Yoo Y, Youngblood JP (2017) Enhanced dispersion and properties of a two-component epoxy nanocomposite using surface modified cellulose nanocrystals. Polymer 112:359–368

    Article  CAS  Google Scholar 

  39. Leung ACW, Hrapovic S, Lam E, Liu Y, Male KB, Mahmoud KA, Luong JHT (2011) Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure. Small 7:302–305

    Article  CAS  PubMed  Google Scholar 

  40. He Y, Zhu J, Wang W, Ni H (2018) Surface modification of cellulose nanocrystals with different acid anhydrides for improved dispersion in poly(butylene succinate). RSC Adv 8:3835–38314

    Google Scholar 

  41. Du W, Deng A, Guo J, Chen J, Li H, Gao Y (2019) An injectable self-healing hydrogel-cellulose nanocrystals conjugate with excellent mechanical strength and good biocompatibility. Carbohydr Polym 223:115084

  42. Khan MA, Ashraf SM, Malhotra VP (2004) Development and characterization of a wood adhesive using bagasse lignin. Int J Adhes Adhes 24:485–493

    Article  CAS  Google Scholar 

  43. Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study. Cellulose 18:607–617

    Article  CAS  Google Scholar 

  44. Wei B, Zhang B, Sun B, Jin Z, Xu X, Tian Y (2016) Aqueous re-dispersibility of starch nanocrystal powder improved by sodium hypochlorite oxidation. Food Hydrocolloids 52:29–37

    Article  CAS  Google Scholar 

  45. Chen X, Liu L, Luo Z, Shen J, Ni Q, Yao J (2018) Facile preparation of a cellulose-based bioadsorbent modified by hPEI in heterogeneous system for high-efficiency removal of multiple types of dyes. React Funct Polym 125:77–83

    Article  CAS  Google Scholar 

  46. Lin N, Bruzzese C, Dufresne A (2012) TEMPO-oxidized nanocellulose participating as crosslinking aid for alginate-based sponges. ACS Appl Mater Interfaces 4:4948–4959

    Article  CAS  PubMed  Google Scholar 

  47. Dhuiège B, Pecastaings G, Sèbe G (2019) Sustainable approach for the direct functionalization of cellulose nanocrystals dispersed in water by transesterification of vinyl acetate. ACS Sustainable Chemistry & Engineering 7:187–196

    Article  CAS  Google Scholar 

  48. Huang F, Wu X, Yu Y, Lu Y, Chen Q (2017) Acylation of cellulose nanocrystals with acids/trifluoroacetic anhydride and properties of films from esters of CNCs. Carbohyd Polym 155:525–534

    Article  CAS  Google Scholar 

  49. Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29:786–794

    Article  CAS  Google Scholar 

  50. Nie S, Zhang C, Zhang Q, Zhang K, Zhang Y, Tao P, Wang S (2018) Enzymatic and cold alkaline pretreatments of sugarcane bagasse pulp to produce cellulose nanofibrils using a mechanical method. Ind Crops Prod 124:435–441

    Article  CAS  Google Scholar 

  51. Gardner DJ, GSOR (2008) Adhesion and surface issues in cellulose and nanocellulose. J Adhes Sci Technol 22:545–567

    Article  CAS  Google Scholar 

  52. Allan GW, Bradbury YSAF (1979) A kinetic model for pyrolysis of cellulose. J Appl Polym Sci 23:3271–3250

    Article  CAS  Google Scholar 

  53. Peng Y, Gardner DJ, Han Y, Kiziltas A, Cai Z, Tshabalala MA (2013) Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20:2379–2392

    Article  CAS  Google Scholar 

  54. Haafiz MM, Eichhorn SJ, Hassan A, Jawaid M (2013) Isolation and characterization of microcrystalline cellulose from oil palm biomass residue. Carbohyd Polym 93:628–634

    Article  CAS  Google Scholar 

  55. Espino-Pérez E, Domenek S, Belgacem N, Sillard C, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromol 15:4551–4560

    Article  CAS  Google Scholar 

  56. Rana D (1998) Thermal and mechanical properties for binary blends of metallocene polyethylene with conventional polyolefins. J Appl Polym Sci 69:2441–2450

    Article  CAS  Google Scholar 

  57. Pereira IM, Oréfice RL (2011) Study of the morphology exhibited by linear segmented polyurethanes. Macromol Symp 299–300:190–198

    Article  CAS  Google Scholar 

  58. Rana D (1993) Miscibility and phase diagrams of poly ( phenyl acrylate) and poly (styrene-co- acrylonitrile) blends. Polymer 34:1454–1459

    Article  CAS  Google Scholar 

  59. Rana D, Sauvant V, Halary JL (2002) Molecular analysis of yielding in pure and antiplasticized epoxy-amine thermosets. J Mater Sci 37:5267–5274

    Article  CAS  Google Scholar 

  60. Rana D, Mounach H, Halary JL, Monnerie L, Watanabe T, Tsurekawa S (2005) Differences in mechanical behavior between alternating and random styrene-methyl methacrylate copolymers. J Mater Sci 40:943–953

    Article  CAS  Google Scholar 

  61. Rana D, Cho K, Woo T, Lee BH, Choe S (1999) Blends of ethylene 1-octene copolymer synthesized by Ziegler-Natta and metallocene catalysts. I. Thermal and mechanical properties. J Appl Polym Sci 74:1169–1177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Guangxi Key Research and Development Project (Guike AB19110035) and the Key Technology Research, the Opening Project of Guangxi Key Laboratory of Green Processing of Sugar Resources (No.GXTZY201909), and the Development and Application Demonstration Project (Guike AA17204092) on low color and low turbidity sugar production based on membrane filtration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianbin Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4372 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, X., Luo, L. et al. Enhancement effect of acylated cellulose nanocrystals on waterborne polyurethane. J Polym Res 29, 347 (2022). https://doi.org/10.1007/s10965-022-02996-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02996-6

Keywords

Navigation