Skip to main content

Advertisement

Log in

Enhancing clinical applications of PVA hydrogel by blending with collagen hydrolysate and silk sericin

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polyvinyl alcohol (PVA) hydrogel is considered suitable for wound dressing but the difficulties in preparation, poor mechanical properties, limited bioactivity and potential cytotoxicity restrict its applications. In the present study, we aim to improve the properties of PVA based hydrogels by combining it with collagen hydrolysate (CH) and silk sericin which are biocompatible proteins and are expected to assist in improving biomedical applications of PVA. Various blends of the polymers were used to prepare hydrogels through the precipitation process and the physical and biological properties were evaluated particularly for controlled release and wound healing applications. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) studies were used to characterize the structure of the hydrogels. Results indicate good interactions and potential crosslinking between PVA and proteins leading to changes in the physicochemical and mechanical properties of the hydrogels. Hydrogels containing both CH and sericin (10P3S5C1G) had comparable properties to neat PVA but with increased water content. Although addition of the proteins leads to marginal decrease in the mechanical strength of the hydrogels, the properties were still in the acceptable range, i.e., tensile strength (3.98 MPa), percentage elongation (365%), and elasticity (2.25 N/mm2). Biological tests showed the superiority of 10P3S5C1G blended hydrogel compared to other blends. Patch test evaluation conducted on healthy volunteers to investigate the safety of 10P3S5C1G showed that about 90% were negative and doubtful reactions, while the remaining 10% were weak reactions. Accordingly, the effects of 10P3S5C1G on human wound healing might be examined in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sen CK, Gordillo GM, Roy S, Kirsner R, Lambert L, Hunt TK, Gottrup F, Gurtner GC, Longaker MT (2009) Human skin wounds: A major and snowballing threat to public health and the economy. Wound Repair Regen 17(6):763–771. https://doi.org/10.1111/j.1524-475X.2009.00543.x

    Article  PubMed  PubMed Central  Google Scholar 

  2. Margolis DJ (2013) Epidemiology of wounds. In Mani R, Romanelli M, Shukla V (eds) Measurements in Wound Healing: Science and Practice. Springer London, London, pp 145–153. https://doi.org/10.1007/978-1-4471-2987-5_8

  3. Kamoun EA, Kenawy E-RS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8(3):217–233. https://doi.org/10.1016/j.jare.2017.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tighe BJ, Mann A (2011) Adhesives and interfacial phenomena in wound healing. In Farrar D (ed) Advanced Wound Repair Therapies. Woodhead Publishing, Oxford, pp 247–283. https://doi.org/10.1533/9780857093301.2.247

  5. Koehler J, Brandl FP, Goepferich AM (2018) Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. Eur Polym J 100:1–11. https://doi.org/10.1016/j.eurpolymj.2017.12.046

    Article  CAS  Google Scholar 

  6. Son YJ, Tse JW, Zhou Y, Mao W, Yim EKF, Yoo HS (2019) Biomaterials and controlled release strategy for epithelial wound healing. Biomater Sci 7(11):4444–4471. https://doi.org/10.1039/C9BM00456D

    Article  CAS  PubMed  Google Scholar 

  7. Mogoşanu GD, Grumezescu AM (2014) Natural and synthetic polymers for wounds and burns dressing. Int J Pharm 463(2):127–136. https://doi.org/10.1016/j.ijpharm.2013.12.015

    Article  CAS  PubMed  Google Scholar 

  8. Aramwit P, Siritientong T, Kanokpanont S, Srichana T (2010) Formulation and characterization of silk sericin–PVA scaffold crosslinked with genipin. Int J Biol Macromol 47(5):668–675. https://doi.org/10.1016/j.ijbiomac.2010.08.015

    Article  CAS  PubMed  Google Scholar 

  9. Mandal BB, Ghosh B, Kundu SC (2011) Non-mulberry silk sericin/poly (vinyl alcohol) hydrogel matrices for potential biotechnological applications. Int J Biol Macromol 49(2):125–133. https://doi.org/10.1016/j.ijbiomac.2011.03.015

    Article  CAS  PubMed  Google Scholar 

  10. Kamoun EA, Chen X, Mohy Eldin MS, Kenawy E-RS (2015) Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab J Chem 8(1):1–14. https://doi.org/10.1016/j.arabjc.2014.07.005

    Article  CAS  Google Scholar 

  11. Lee JH, Bae YS, Kim SJ, Song DW, Park YH, Bae DG, Choi JH, Um IC (2018) Preparation of new natural silk non-woven fabrics by using adhesion characteristics of sericin and their characterization. Int J Biol Macromol 106:39–47. https://doi.org/10.1016/j.ijbiomac.2017.07.179

    Article  CAS  PubMed  Google Scholar 

  12. Yamdej R, Pangza K, Srichana T, Aramwit P (2016) Superior physicochemical and biological properties of poly(vinyl alcohol)/sericin hydrogels fabricated by a non-toxic gamma-irradiation technique. J Bioact Compat Polym 32(1):32–44. https://doi.org/10.1177/0883911516653145

    Article  CAS  Google Scholar 

  13. Tao G, Wang Y, Cai R, Chang H, Song K, Zuo H, Zhao P, Xia Q, He H (2019) Design and performance of sericin/poly(vinyl alcohol) hydrogel as a drug delivery carrier for potential wound dressing application. Mater Sci Eng C 101:341–351. https://doi.org/10.1016/j.msec.2019.03.111

    Article  CAS  Google Scholar 

  14. Otsuka E, Komiya S, Sasaki S, Xing J, Bando Y, Hirashima Y, Sugiyama M, Suzuki A (2012) Effects of preparation temperature on swelling and mechanical properties of PVA cast gels. Soft Matter 8(31):8129–8136. https://doi.org/10.1039/C2SM25513H

    Article  CAS  Google Scholar 

  15. Nyström A (2016) Collagens in wound healing. In Ågren MS (ed) Wound Healing Biomaterials. Woodhead Publishing, Duxford, pp 171–201. https://doi.org/10.1016/B978-1-78242-456-7.00009-X

  16. Pamfil D, Nistor MT, Vasile C (2015) Collagen-based materials for pharmaceutical applications. In Thakur VK, Thakur MK (eds) Handbook of Polymers for Pharmaceutical Technologies. John Wiley & Sons, Inc., Beverly, pp 439–481. https://doi.org/10.1002/9781119041450.ch13

  17. Kloeters O, Unglaub F, de Laat E, van Abeelen M, Ulrich D (2016) Prospective and randomised evaluation of the protease-modulating effect of oxidised regenerated cellulose/collagen matrix treatment in pressure sore ulcers. Int Wound J 13(6):1231–1236. https://doi.org/10.1111/iwj.12449

    Article  PubMed  Google Scholar 

  18. de Carvalho VF, Paggiaro AO, Isaac C, Gringlas J, Ferreira MC (2011) Clinical trial comparing 3 different wound dressings for the management of partial-thickness skin graft donor sites. J Wound Ostomy Continence Nurs 38(6):643–647. https://doi.org/10.1097/WON.0b013e3182349d2f

    Article  PubMed  Google Scholar 

  19. León-López A, Morales-Peñaloza A, Martínez-Juárez VM, Vargas-Torres A, Zeugolis DI, Aguirre-Álvarez G (2019) Hydrolyzed collagen-sources and applications. Molecules 24(22):4031. https://doi.org/10.3390/molecules24224031

    Article  CAS  PubMed Central  Google Scholar 

  20. Hayashi Y, Yamada S, Yanagi Guchi K, Koyama Z, Ikeda T (2012) Chitosan and fish collagen as biomaterials for regenerative medicine. In Kim S-K (ed) Advances in Food and Nutrition Research, vol 65. Academic Press, San Diego, pp 107–120. https://doi.org/10.1016/B978-0-12-416003-3.00006-8

  21. Ramadass SK, Nazir LS, Thangam R, Perumal RK, Manjubala I, Madhan B, Seetharaman S (2019) Type I collagen peptides and nitric oxide releasing electrospun silk fibroin scaffold: A multifunctional approach for the treatment of ischemic chronic wounds. Colloids Surf B Biointerfaces 175:636–643. https://doi.org/10.1016/j.colsurfb.2018.12.025

    Article  CAS  PubMed  Google Scholar 

  22. Ramadass SK, Perumal S, Gopinath A, Nisal A, Subramanian S, Madhan B (2014) Sol-Gel assisted fabrication of collagen hydrolysate composite scaffold: A novel therapeutic alternative to the traditional collagen scaffold. ACS Appl Mater Interfaces 6(17):15015–15025. https://doi.org/10.1021/am502948g

    Article  CAS  PubMed  Google Scholar 

  23. Hong H, Fan H, Chalamaiah M, Wu J (2019) Preparation of low-molecular-weight, collagen hydrolysates (peptides): Current progress, challenges, and future perspectives. Food Chem 301:125222. https://doi.org/10.1016/j.foodchem.2019.125222

    Article  CAS  PubMed  Google Scholar 

  24. Sionkowska A, Skrzyński S, Śmiechowski K, Kołodziejczak A (2017) The review of versatile application of collagen. Polym Adv Technol 28(1):4–9. https://doi.org/10.1002/pat.3842

    Article  CAS  Google Scholar 

  25. Teodorescu M, Bercea M, Morariu S (2018) Biomaterials of poly(vinyl alcohol) and natural polymers. Polym Rev 58(2):247–287. https://doi.org/10.1080/15583724.2017.1403928

    Article  CAS  Google Scholar 

  26. Zhang X, Yin Z, Guo Y, Huang H, Zhou J, Wang L, Bai J, Fan Z (2020) A facile and large-scale synthesis of a PVA/chitosan/collagen hydrogel for wound healing. New J Chem 44(47):20776–20784. https://doi.org/10.1039/D0NJ04016A

    Article  CAS  Google Scholar 

  27. García-Hernández AB, Morales-Sánchez E, Calderón-Domínguez G, MdlP S-C, Farrera-Rebollo RR, Vega-Cuellar MÁ, García-Bórquez A (2021) Hydrolyzed collagen on PVA-based electrospun membranes: Synthesis and characterization. J Appl Polym Sci 138(41):51197. https://doi.org/10.1002/app.51197

    Article  CAS  Google Scholar 

  28. Aramwit P, Siritientong T, Srichana T (2012) Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Manag Res 30(3):217–224. https://doi.org/10.1177/0734242x11404733

    Article  CAS  PubMed  Google Scholar 

  29. Aramwit P, Kanokpanont S, De-Eknamkul W, Kamei K, Srichana T (2009) The effect of sericin with variable amino-acid content from different silk strains on the production of collagen and nitric oxide. J Biomater Sci Polym Ed 20(9):1295–1306. https://doi.org/10.1163/156856209x453006

    Article  CAS  PubMed  Google Scholar 

  30. Brooks AE (2015) The potential of silk and silk-like proteins as natural mucoadhesive biopolymers for controlled drug delivery. Front Chem 3:65–65. https://doi.org/10.3389/fchem.2015.00065

    Article  PubMed  PubMed Central  Google Scholar 

  31. Aramwit P, Kanokpanont S, Nakpheng T, Srichana T (2010) The effect of sericin from various extraction methods on cell viability and collagen production. Int J Mol Sci 11(5):2200–2211. https://doi.org/10.3390/ijms11052200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aramwit P, Palapinyo S, Srichana T, Chottanapund S, Muangman P (2013) Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds. Arch Dermatol Res 305(7):585–594. https://doi.org/10.1007/s00403-013-1371-4

    Article  CAS  PubMed  Google Scholar 

  33. Gilotra S, Chouhan D, Bhardwaj N, Nandi SK, Mandal BB (2018) Potential of silk sericin based nanofibrous mats for wound dressing applications. Mater Sci Eng C Mater Biol 90:420–432. https://doi.org/10.1016/j.msec.2018.04.077

    Article  CAS  Google Scholar 

  34. Wang Z, Zhang Y, Zhang J, Huang L, Liu J, Li Y, Zhang G, Kundu SC, Wang L (2014) Exploring natural silk protein sericin for regenerative medicine: an injectable, photoluminescent, cell-adhesive 3D hydrogel. Sci Rep 4(1):7064. https://doi.org/10.1038/srep07064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aramwit P (2014) Bio-response to silk sericin. In Kundu SC (ed) Silk Biomaterials for Tissue Engineering and Regenerative Medicine. Woodhead Publishing, Cambridge, pp 299–329. https://doi.org/10.1533/9780857097064.2.299

  36. Dinescu S, Galateanu B, Albu M, Cimpean A, Dinischiotu A, Costache M (2013) Sericin enhances the bioperformance of collagen-based matrices preseeded with human-adipose derived stem cells (hADSCs). Int J Mol Sci 14(1):1870–1889. https://doi.org/10.3390/ijms14011870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boonrungsiman S, Thongtham N, Suwantong O, Wutikhun T, Soykeabkaew N, Nimmannit U (2018) An improvement of silk-based scaffold properties using collagen type I for skin tissue engineering applications. Polym Bull 75(2):685–700. https://doi.org/10.1007/s00289-017-2063-6

    Article  CAS  Google Scholar 

  38. Kundu SC, Dash BC, Dash R, Kaplan DL (2008) Natural protective glue protein, sericin bioengineered by silkworms: Potential for biomedical and biotechnological applications. Prog Polym Sci 33(10):998–1012. https://doi.org/10.1016/j.progpolymsci.2008.08.002

    Article  CAS  Google Scholar 

  39. Lee K, Kweon H, Yeo JH, Woo SO, Lee YW, Cho C-S, Kim KH, Park YH (2003) Effect of methyl alcohol on the morphology and conformational characteristics of silk sericin. Int J Biol Macromol 33(1):75–80. https://doi.org/10.1016/S0141-8130(03)00069-2

    Article  CAS  PubMed  Google Scholar 

  40. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  41. McNamee PM, Api AM, Basketter DA, Frank Gerberick G, Gilpin DA, Hall BM, Jowsey I, Robinson MK (2008) A review of critical factors in the conduct and interpretation of the human repeat insult patch test. Regul Toxicol Pharmacol 52(1):24–34. https://doi.org/10.1016/j.yrtph.2007.10.019

    Article  PubMed  Google Scholar 

  42. Otsuka E, Suzuki A (2009) A simple method to obtain a swollen PVA gel crosslinked by hydrogen bonds. J Appl Polym Sci 114(1):10–16. https://doi.org/10.1002/app.30546

    Article  CAS  Google Scholar 

  43. Boateng JS, Matthews KH, Stevens HNE, Eccleston GM (2008) Wound healing dressings and drug delivery systems: A review. J Pharm Sci 97(8):2892–2923. https://doi.org/10.1002/jps.21210

    Article  CAS  PubMed  Google Scholar 

  44. Hong KH (2016) Preparation and properties of polyvinyl alcohol/tannic acid composite film for topical treatment application. Fibers Polym 17(12):1963–1968. https://doi.org/10.1007/s12221-016-6886-9

    Article  CAS  Google Scholar 

  45. Chen Y-N, Jiao C, Zhao Y, Zhang J, Wang H (2018) Self-assembled polyvinyl alcohol–tannic acid hydrogels with diverse microstructures and good mechanical properties. ACS Omega 3(9):11788–11795. https://doi.org/10.1021/acsomega.8b02041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jipa IM, Stoica A, Stroescu M, Dobre L-M, Dobre T, Jinga S, Tardei C (2012) Potassium sorbate release from poly(vinyl alcohol)-bacterial cellulose films. Chem Zvesti 66(2):138–143. https://doi.org/10.2478/s11696-011-0068-4

    Article  CAS  Google Scholar 

  47. Yang H, Yang S, Kong J, Dong A, Yu S (2015) Obtaining information about protein secondary structures in aqueous solution using Fourier transform IR spectroscopy. Nat Protoc 10:382. https://doi.org/10.1038/nprot.2015.024

    Article  CAS  PubMed  Google Scholar 

  48. Haris PI (2013) Probing protein–protein interaction in biomembranes using Fourier transform infrared spectroscopy. Biochim Biophys Acta Biomembr 1828(10):2265–2271. https://doi.org/10.1016/j.bbamem.2013.04.008

    Article  CAS  Google Scholar 

  49. Teramoto H, Kakazu A, Yamauchi K, Asakura T (2007) Role of hydroxyl side chains in Bombyx mori silk sericin in stabilizing its solid structure. Macromolecules 40(5):1562–1569. https://doi.org/10.1021/ma062604e

    Article  CAS  Google Scholar 

  50. Duan L, Yuan J, Yang X, Cheng X, Li J (2016) Interaction study of collagen and sericin in blending solution. Int J Biol Macromol 93(Pt A):468–475. https://doi.org/10.1016/j.ijbiomac.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  51. Kim JO, Park JK, Kim JH, Jin SG, Yong CS, Li DX, Choi JY, Woo JS, Yoo BK, Lyoo WS, Kim J-A, Choi H-G (2008) Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. Int J Pharm 359(1):79–86. https://doi.org/10.1016/j.ijpharm.2008.03.021

    Article  CAS  PubMed  Google Scholar 

  52. Akturk O, Tezcaner A, Bilgili H, Deveci MS, Gecit MR, Keskin D (2011) Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. J Biosci Bioeng 112(3):279–288. https://doi.org/10.1016/j.jbiosc.2011.05.014

    Article  CAS  PubMed  Google Scholar 

  53. Kim DW, Kim KS, Seo YG, Lee B-J, Park YJ, Youn YS, Kim JO, Yong CS, Jin SG, Choi H-G (2015) Novel sodium fusidate-loaded film-forming hydrogel with easy application and excellent wound healing. Int J Pharm 495(1):67–74. https://doi.org/10.1016/j.ijpharm.2015.08.082

    Article  CAS  PubMed  Google Scholar 

  54. Limpan N, Prodpran T, Benjakul S, Prasarpran S (2012) Influences of degree of hydrolysis and molecular weight of poly(vinyl alcohol) (PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocoll 29(1):226–233. https://doi.org/10.1016/j.foodhyd.2012.03.007

    Article  CAS  Google Scholar 

  55. Lee D, Zhang H, Ryu S (2019) Elastic Modulus Measurement of Hydrogels. In Mondal MIH (ed) Cellulose-Based Superabsorbent Hydrogels. Springer International Publishing, Cham, pp 865–884. https://doi.org/10.1007/978-3-319-77830-3_60

  56. Hao J, Weiss RA (2013) Mechanical behavior of hybrid hydrogels composed of a physical and a chemical network. Polymer 54(8):2174–2182. https://doi.org/10.1016/j.polymer.2013.01.052

    Article  CAS  Google Scholar 

  57. Lee SM, Park IK, Kim YS, Kim HJ, Moon H, Mueller S, Jeong Y-I (2016) Physical, morphological, and wound healing properties of a polyurethane foam-film dressing. Biomater Res 20:15–15. https://doi.org/10.1186/s40824-016-0063-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Contardi M, Russo D, Suarato G, Heredia-Guerrero JA, Ceseracciu L, Penna I, Margaroli N, Summa M, Spanò R, Tassistro G, Vezzulli L, Bandiera T, Bertorelli R, Athanassiou A, Bayer IS (2019) Polyvinylpyrrolidone/hyaluronic acid-based bilayer constructs for sequential delivery of cutaneous antiseptic and antibiotic. Chem Eng J 358:912–923. https://doi.org/10.1016/j.cej.2018.10.048

    Article  CAS  Google Scholar 

  59. Bhattacharjee A, Kumar K, Arora A, Katti DS (2016) Fabrication and characterization of Pluronic modified poly(hydroxybutyrate) fibers for potential wound dressing applications. Mater Sci Eng C 63:266–273. https://doi.org/10.1016/j.msec.2016.02.074

    Article  CAS  Google Scholar 

  60. Aderibigbe BA, Buyana B (2018) Alginate in wound dressings Pharmaceutics 10(2):42. https://doi.org/10.3390/pharmaceutics10020042

    Article  CAS  Google Scholar 

  61. Blair MJ, Jones JD, Woessner AE, Quinn KP (2020) Skin structure-function relationships and the wound healing response to intrinsic aging. Adv Wound Care 9(3):127–143. https://doi.org/10.1089/wound.2019.1021

    Article  Google Scholar 

  62. Siritientong T, Angspatt A, Ratanavaraporn J, Aramwit P (2014) Clinical potential of a silk sericin-releasing bioactive wound dressing for the treatment of split-thickness skin graft donor sites. Pharm Res 31(1):104–116. https://doi.org/10.1007/s11095-013-1136-y

    Article  CAS  PubMed  Google Scholar 

  63. Lazzarini R, Duarte I, Ferreira AL (2013) Patch tests. An Bras Dermatol 88(6):879–888. https://doi.org/10.1590/abd1806-4841.20132323

    Article  PubMed  PubMed Central  Google Scholar 

  64. Johansen JD, Aalto-Korte K, Agner T, Andersen KE, Bircher A, Bruze M, Cannavo A, Gimenez-Arnau A, Goncalo M, Goossens A, John SM, Liden C, Lindberg M, Mahler V, Matura M, Rustemeyer T, Serup J, Spiewak R, Thyssen JP, Vigan M, White IR, Wilkinson M, Uter W (2015) European society of contact dermatitis guideline for diagnostic patch testing - recommendations on best practice. Contact Dermatitis 73(4):195–221. https://doi.org/10.1111/cod.12432

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Thailand Science Research and Innovation Fund through the Research and Researcher for Industry Programme (RRi) (Grant No. PHD58I0006) to Apirujee Punjataewakupt and Pornanong Aramwit, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornanong Aramwit.

Ethics declarations

Ethical approval

The protocol was approved by the Ethics Review Committee for Research Involving Human Research Subjects, Institutional Review Board, Faculty of Medicine, Chulalongkorn University (COA No. 496/2018).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punjataewakupt, A., Reddy, N. & Aramwit, P. Enhancing clinical applications of PVA hydrogel by blending with collagen hydrolysate and silk sericin. J Polym Res 29, 110 (2022). https://doi.org/10.1007/s10965-022-02965-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02965-z

Keywords

Navigation