Skip to main content
Log in

Nontoxic double-network polymeric hybrid aerogel functionalized with reduced graphene oxide: Preparation, characterization, and evaluation as drug delivery agent

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Biopolymer aerogel microspheres based on K-carrageenan, Sodium-alginate, and reduced graphene oxide (SA/K-CG/rGO) were fabricated by crosslinking with divalent cation (Ca2+) and sol–gel technique followed by super critical drying. Then, the synthesized SA/K-CG/Ca2+-k+/rGO hybrid aerogel has been evaluated as an effective drug delivery system (DDS). The obtained aerogel was characterized using Fourier transformed infrared spectroscopy (FT-IR), X-ray Diffraction spectroscopy (XRD), Scanning Electron Microscope (SEM/EDS), and Brunauer–Emmett–Teller (BET). Amoxicillin as a model drug was immobilized in aerogel up to 94%. The release profile designated a continuous pH-dependent discharge at two studied pH scales (4.0, 5.5, 7.4 and 9.0). Finally, Korsmeyer-Peppas model and Higuchi model have been applied to evaluate the release kinetics, and it proves that the release of Amox from the hybrid aerogels is controlled by Fickian diffusion. The minimum inhibitory concentration (MIC) index for Aerogel/Amox with rGO was 250 µg/ml and 62 µg/ml for Streptomyces aureus and Escherichia coli, respectively. Besides, the cell viability assay did not show toxicity against normal endothelial cells. Collectively, the results determine the SA/K-CG/Ca2+-k+/rGO aerogel would be a potential material for the fabrication of pH-controlled drug delivery scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhao S, Malfait WJ, Guerrero-Alburquerque N, Koebel MM, Nyström G (2018) Biopolymer Aerogels and Foams: Chemistry, Properties, and Applications. Angew Chem Int Ed 57(26):7580–7608. https://doi.org/10.1002/anie.201709014

    Article  CAS  Google Scholar 

  2. Esquivel-Castro TA, Ibarra-Alonso MC, Oliva J, Martínez-Luévanos A (2019) Porous aerogel and core/shell nanoparticles for controlled drug delivery: A review. Mater Sci Eng, C 96:915–940. https://doi.org/10.1016/j.msec.2018.11.067

    Article  CAS  Google Scholar 

  3. Wang C, Okubayashi S (2019) 3D aerogel of cellulose triacetate with supercritical antisolvent process for drug delivery. The Journal of Supercritical Fluids 148:33–41

    CAS  Google Scholar 

  4. Arruebo M (2012) Drug delivery from structured porous inorganic materials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 4(1):16–30

    PubMed  CAS  Google Scholar 

  5. Sher P, Ingavle G, Ponrathnam S, Pawar AP (2007) Low density porous carrier: Drug adsorption and release study by response surface methodology using different solvents. Int J Pharm 331(1):72–83

    PubMed  CAS  Google Scholar 

  6. Rinki K, Dutta PK, Hunt AJ, Macquarrie DJ, Clark JH (2011) Chitosan aerogels exhibiting high surface area for biomedical application: preparation, characterization, and antibacterial study. Int J Polym Mater 60(12):988–999

    CAS  Google Scholar 

  7. Beija M, Li Y, Lowe AB, Davis TP, Boyer C (2013) Factors influencing the synthesis and the post-modification of PEGylated pentafluorophenyl acrylate containing copolymers. Eur Polymer J 49(10):3060–3071

    CAS  Google Scholar 

  8. Maleki H (2016) Recent advances in aerogels for environmental remediation applications: A review. Chem Eng J 300:98–118. https://doi.org/10.1016/j.cej.2016.04.098

    Article  CAS  Google Scholar 

  9. Yadollahi M, Namazi H, Barkhordari S (2014) Preparation and properties of carboxymethyl cellulose/layered double hydroxide bionanocomposite films. Carbohyd Polym 108:83–90

    CAS  Google Scholar 

  10. Namazi H, Fathi F, Heydari A (2012) Nanoparticles based on modified polysaccharides. InTech,

  11. Namazi H, Mosadegh M (2011) Preparation and properties of starch/nanosilicate layer/polycaprolactone composites. J Polym Environ 19(4):980–987

    CAS  Google Scholar 

  12. Namazi H, Heydari A, Pourfarzolla A (2014) Synthesis of glycoconjugated polymer based on polystyrene and nanoporous β-cyclodextrin to remove copper (II) from water pollution. Int J Polym Mater Polym Biomater 63(1):1–6

    CAS  Google Scholar 

  13. Frank D, Espeel P, Badi N, Du Prez F (2018) Structurally diverse polymers from norbornene and thiolactone containing building blocks. Eur Polymer J 98:246–253

    CAS  Google Scholar 

  14. Namazi H, Belali S (2016) Starch-g-lactic acid/montmorillonite nanocomposite: Synthesis, characterization and controlled drug release study. Starch-Stärke 68(3–4):177–187

    CAS  Google Scholar 

  15. Namazi H, Fathi F, Heydari A (2012) Nanoparticles based on modified polysaccharides. In: The delivery of nanoparticles. InTech,

  16. Namazi H (2017) Polymers in our daily life. BioImpacts: BI 7 (2):73

  17. Batista M, Gonçalves V, Gaspar F, Nogueira I, Matias A, Gurikov P (2020) Novel alginate-chitosan aerogel fibres for potential wound healing applications. Internatl J Biologic Macromole

  18. Rakhshaei R, Namazi H, Hamishehkar H, Kafil HS, Salehi R (2019) In situ synthesized chitosan–gelatin/ZnO nanocomposite scaffold with drug delivery properties: Higher antibacterial and lower cytotoxicity effects. J Appl Polym Sci 136(22):47590

    Google Scholar 

  19. Ulker Z, Erkey C (2014) An emerging platform for drug delivery: Aerogel based systems. J Control Release 177:51–63

    PubMed  CAS  Google Scholar 

  20. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102(11):4243–4266

    PubMed  CAS  Google Scholar 

  21. Gonçalves VS, Gurikov P, Poejo J, Matias AA, Heinrich S, Duarte CM, Smirnova I (2016) Alginate-based hybrid aerogel microparticles for mucosal drug delivery. Eur J Pharm Biopharm 107:160–170

    PubMed  Google Scholar 

  22. Bakravi A, Ahamadian Y, Hashemi H, Namazi H (2018) Synthesis of gelatin‐based biodegradable hydrogel nanocomposite and their application as drug delivery agent. Adv Poly Technol

  23. Yin G-Z, Yang X-M (2020) Biodegradable polymers: a cure for the planet, but a long way to go. J Polym Res 27(2):1–14

    Google Scholar 

  24. Rakhshaei R, Namazi H, Hamishehkar H, Rahimi M (2020) Graphene quantum dot cross-linked carboxymethyl cellulose nanocomposite hydrogel for pH-sensitive oral anticancer drug delivery with potential bioimaging properties. Int J Biol Macromol 150:1121–1129

    PubMed  CAS  Google Scholar 

  25. Saboktakin A, Saboktakin MR (2015) Improvements of reinforced silica aerogel nanocomposites thermal properties for architecture applications. Int J Biol Macromol 72:230–234

    PubMed  CAS  Google Scholar 

  26. Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37(1):106–126

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Bibi A, Akhtar T, Akhtar K, Farooq M, Shahzad MI (2020) Alginate-chitosan/MWCNTs nanocomposite: A novel approach for sustained release of Ibuprofen. J Polym Res 27(12):1–16

    Google Scholar 

  28. Nzenguet AM, Aqlil M, Essamlali Y, Amadine O, Snik A, Larzek M, Zahouily M (2018) Novel bionanocomposite films based on graphene oxide filled starch/polyacrylamide polymer blend: structural, mechanical and water barrier properties. J Polym Res 25(4):1–13

    CAS  Google Scholar 

  29. Kabiri R, Namazi H (2016) Synthesis of cellulose/reduced graphene oxide/polyaniline nanocomposite and its properties. Int J Polym Mater Polym Biomater 65(13):675–682

    CAS  Google Scholar 

  30. Karimi S, Namazi H (2020) Simple preparation of maltose-functionalized dendrimer/graphene quantum dots as a pH-sensitive biocompatible carrier for targeted delivery of doxorubicin. Int J Biol Macromol 156:648–659

    PubMed  CAS  Google Scholar 

  31. Gorgolis G, Galiotis C (2017) Graphene aerogels: a review. 2D Materials 4 (3):032001

  32. Najafabadi HH, Irani M, Rad LR, Haratameh AH, Haririan I (2015) Correction: Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Adv 5(29):22390–22390

    CAS  Google Scholar 

  33. Norton IT, Goodall DM, Morris ER, Rees DA (1978) Dynamics of the salt-induced random coil to helix transition in segmented ι-carrageenan. J Chem Soc, Chem Commun 12:515–516

    Google Scholar 

  34. Javanbakht S, Namazi H (2017) Solid state photoluminescence thermoplastic starch film containing graphene quantum dots. Carbohyd Polym 176:220–226

    CAS  Google Scholar 

  35. Wang R, Shou D, Lv O, Kong Y, Deng L, Shen J (2017) pH-Controlled drug delivery with hybrid aerogel of chitosan, carboxymethyl cellulose and graphene oxide as the carrier. Int J Biol Macromol 103:248–253

    PubMed  CAS  Google Scholar 

  36. Quraishi S, Martins M, Barros AA, Gurikov P, Raman S, Smirnova I, Duarte ARC, Reis RL (2015) Novel non-cytotoxic alginate–lignin hybrid aerogels as scaffolds for tissue engineering. The Journal of Supercritical Fluids 105:1–8

    CAS  Google Scholar 

  37. Raman S, Gurikov P, Smirnova I (2015) Hybrid alginate based aerogels by carbon dioxide induced gelation: Novel technique for multiple applications. The Journal of Supercritical Fluids 106:23–33

    CAS  Google Scholar 

  38. Fan J, Shi Z, Lian M, Li H, Yin J (2013) Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity. Journal of Materials Chemistry A 1(25):7433–7443

    CAS  Google Scholar 

  39. Uppalapati D, Boyd BJ, Garg S, Travas-Sejdic J, Svirskis D (2016) Conducting polymers with defined micro-or nanostructures for drug delivery. Biomaterials 111:149–162

    PubMed  CAS  Google Scholar 

  40. Van Vlierberghe S, Dubruel P, Schacht E (2011) Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromol 12(5):1387–1408

    Google Scholar 

  41. Lim Y-M, Gwon H-J, Choi J-H, Shin J, Nho Y-C, Jeong SI, Chong MS, Lee Y-M, Kwon IK, Kim SE (2010) Preparation and biocompatibility study of gelatin/kappa-carrageenan scaffolds. Macromol Res 18(1):29–34

    CAS  Google Scholar 

  42. Li L, Zhao J, Sun Y, Yu F, Ma J (2019) Ionically cross-linked sodium alginate/ĸ-carrageenan double-network gel beads with low-swelling, enhanced mechanical properties, and excellent adsorption performance. Chem Eng J 372:1091–1103

    CAS  Google Scholar 

  43. Li Z, Wang Z, Li M, Gao Z, Wang B (2019) Measurement and correlation of solubility of methyl gallate in nine pure and ethanol+ n-propanol mixed solvents at temperatures within 293.15–333.15 K. J Mole Liq 293:111531

  44. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28(3):603–661

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Kazempour M, Namazi H, Akbarzadeh A, Kabiri R (2019) Synthesis and characterization of PEG-functionalized graphene oxide as an effective pH-sensitive drug carrier. Artificial cells, nanomedicine, and biotechnology 47(1):90–94

    PubMed  CAS  Google Scholar 

  46. Kabiri R, Namazi H (2014) Nanocrystalline cellulose acetate (NCCA)/graphene oxide (GO) nanocomposites with enhanced mechanical properties and barrier against water vapor. Cellulose 21(5):3527–3539

    CAS  Google Scholar 

  47. Han D, Yan L, Chen W, Li W (2011) Preparation of chitosan/graphene oxide composite film with enhanced mechanical strength in the wet state. Carbohyd Polym 83(2):653–658

    CAS  Google Scholar 

  48. Yang M, Liu X, Qi Y, Sun W, Men Y (2017) Preparation of κ-carrageenan/graphene oxide gel beads and their efficient adsorption for methylene blue. J Colloid Interface Sci 506:669–677. https://doi.org/10.1016/j.jcis.2017.07.093

    Article  PubMed  CAS  Google Scholar 

  49. Kobayashi M, Hyu HS (2010) Development and evaluation of polyvinyl alcohol-hydrogels as an artificial atrticular cartilage for orthopedic implants. Materials 3(4):2753–2771

    PubMed Central  CAS  Google Scholar 

  50. Karimzadeh Z, Javanbakht S, Namazi H (2018) Carboxymethylcellulose/MOF-5/Graphene oxide bio-nanocomposite as antibacterial drug nanocarrier agent. BioImpacts 9(1):5–13

    PubMed  PubMed Central  Google Scholar 

  51. Cao Z, Zheng L, Zhao J, Zhuang Q, Hong Z, Lin W (2017) Anti-angiogenic effect of Livistona chinensis seed extract in vitro and in vivo. Oncol Lett 14(6):7565–7570

    PubMed  PubMed Central  Google Scholar 

  52. Namazi H, Hamrahloo YT (2011) Novel PH sensitive nanocarrier agents based on citric acid dendrimers containing conjugated β-cyclodextrins. Advanced pharmaceutical bulletin 1(1):40

    PubMed  PubMed Central  Google Scholar 

  53. Namazi H, Heydari A (2014) Synthesis of β-cyclodextrin-based dendrimer as a novel encapsulation agent. Polym Int 63(8):1447–1455

    CAS  Google Scholar 

  54. Nikpour Moghadam S, Nikpour Moghadam S (2016) The Antibacterial Effect of Aqueous Extract of Garlic against Resistant Enterococci. Med Lab J 10(1):7–12

    Google Scholar 

  55. Bui VT, Nguyen BT, Nicolai T, Renou F (2019) Mixed iota and kappa carrageenan gels in the presence of both calcium and potassium ions. Carbohyd Polym 223:115107

  56. Javanbakht S, Nazari N, Rakhshaei R, Namazi H (2018) Cu-crosslinked carboxymethylcellulose/naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery. Carbohyd Polym 195:453–459

    CAS  Google Scholar 

  57. Yu F, Cui T, Yang C, Dai X, Ma J (2019) κ-Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity. Chemosphere 237:124417

  58. Mohamadnia Z, Zohuriaan-Mehr M, Kabiri K, Jamshidi A, Mobedi H (2008) Ionically cross-linked carrageenan-alginate hydrogel beads. J Biomater Sci Polym Ed 19(1):47–59

    PubMed  CAS  Google Scholar 

  59. Chenlu J, Li T, Wang J, Wang H, Zhang X, Han X, Zhaofang D, Yali S, Yuyue C (2020) Efficient removal of dyes from aqueous solution by a porous sodium alginate/gelatin/graphene oxide triple-network composite aerogel. J Polym Environ 28(5):1492–1502

    Google Scholar 

  60. Namvari M, Namazi H (2014) Sweet graphene I: toward hydrophilic graphene nanosheets via click grafting alkyne-saccharides onto azide-functionalized graphene oxide. Carbohyd Res 396:1–8

    CAS  Google Scholar 

  61. Namvari M, Namazi H (2015) Preparation of efficient magnetic biosorbents by clicking carbohydrates onto graphene oxide. J Mater Sci 50(15):5348–5361

    CAS  Google Scholar 

  62. Kabiri R, Namazi H (2014) Surface grafting of reduced graphene oxide using nanocrystalline cellulose via click reaction. J Nanopart Res 16(7):2474

    Google Scholar 

  63. Aprilliza M (2017) Characterization and properties of sodium alginate from brown algae used as an ecofriendly superabsorbent. In: IOP Conference Series: Mater Sci Eng 1: IOP Publishing 012019

  64. Elsupikhe RF, Shameli K, Ahmad MB, Ibrahim NA, Zainudin N (2015) Green sonochemical synthesis of silver nanoparticles at varying concentrations of κ-carrageenan. Nanoscale Res Lett 10(1):302

    PubMed Central  Google Scholar 

  65. Volery P, Besson R, Schaffer-Lequart C (2004) Characterization of commercial carrageenans by Fourier transform infrared spectroscopy using single-reflection attenuated total reflection. J Agric Food Chem 52(25):7457–7463

    PubMed  CAS  Google Scholar 

  66. Shantier SW, Gadkariem EA, Ibrahim KAE International journal of drug formulation and research a colorimetric method for the determination of tobramycin.

  67. Bisson-Boutelliez C, Fontanay S, Finance C, Kedzierewicz F (2010) Preparation and physicochemical characterization of amoxicillin β-cyclodextrin complexes. AAPS PharmSciTech 11(2):574–581

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Nieto A, Bisht A, Lahiri D, Zhang C, Agarwal A (2017) Graphene reinforced metal and ceramic matrix composites: a review. Int Mater Rev 62(5):241–302

    CAS  Google Scholar 

  69. Prasad K, Kaneko Y, Ji K (2009) Novel gelling systems of κ-, ι-and λ-carrageenans and their composite gels with cellulose using ionic liquid. Macromol Biosci 9(4):376–382

    PubMed  CAS  Google Scholar 

  70. Sharifzadeh G, Wahit MU, Soheilmoghaddam M, Whye WT, Pasbakhsh P (2016) Kappa-carrageenan/halloysite nanocomposite hydrogels as potential drug delivery systems. J Taiwan Inst Chem Eng 67:426–434

    CAS  Google Scholar 

  71. Lin K-S, Mai Y-J, Li S-R, Shu C-W, Wang C-H (2012) Characterization and hydrogen storage of surface-modified multiwalled carbon nanotubes for fuel cell application. J Nanomater 2012:13

    Google Scholar 

  72. Sundarrajan P, Eswaran P, Marimuthu A, Subhadra LB, Kannaiyan P (2012) One pot synthesis and characterization of alginate stabilized semiconductor nanoparticles. Bull Korean Chem Soc 33(10):3218–3224

    CAS  Google Scholar 

  73. Clark S, Jeon K-J, Chen J-Y, Yoo C-S (2013) Few-layer graphene under high pressure: Raman and X-ray diffraction studies. Solid State Commun 154:15–18

    CAS  Google Scholar 

  74. Ruammaitree A, Nakahara H, Akimoto K, Soda K, Saito Y (2013) Determination of non-uniform graphene thickness on SiC (0 0 0 1) by X-ray diffraction. Appl Surf Sci 282:297–301

    CAS  Google Scholar 

  75. Wu J-B, Zhang X, Ijäs M, Han W-P, Qiao X-F, Li X-L, Jiang D-S, Ferrari AC, Tan P-H (2014) Resonant Raman spectroscopy of twisted multilayer graphene. Nat Commun 5(1):1–8

    Google Scholar 

  76. Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R (2010) Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett 10(3):751–758

    PubMed  CAS  Google Scholar 

  77. Thakur S, Karak N (2012) Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50(14):5331–5339

    CAS  Google Scholar 

  78. Chen CK, Lin WJ, Hsia Y, Lo LW (2017) Synthesis of Polylactide-Based Core-Shell Interface Cross-Linked Micelles for Anticancer Drug Delivery. Macromol Biosci 17(3):1600191

    Google Scholar 

  79. Aryal S, Hu C-MJ, Zhang L (2011) Polymeric nanoparticles with precise ratiometric control over drug loading for combination therapy. Mol Pharm 8(4):1401–1407

    PubMed  PubMed Central  CAS  Google Scholar 

  80. Jo M-H, Hong J-K, Park H-H, Kim J-J, Hyun S-H (1997) Evaluation of SiO2 aerogel thin film with ultra low dielectric constant as an intermetal dielectric. Microelectron Eng 33(1):343–348. https://doi.org/10.1016/S0167-9317(96)00063-9

    Article  CAS  Google Scholar 

  81. Elias PM (2015) Stratum corneum acidification: how and why? Exp Dermatol 24(3):179–180

    PubMed  PubMed Central  Google Scholar 

  82. Ye S, He S, Su C, Jiang L, Wen Y, Zhu Z, Shao W (2018) Morphological, Release and Antibacterial Performances of Amoxicillin-Loaded Cellulose Aerogels. Molecules 23(8):2082

    PubMed Central  Google Scholar 

  83. Dey SK, De PK, De A, Ojha S, De R, Mukhopadhyay AK, Samanta A (2016) Floating mucoadhesive alginate beads of amoxicillin trihydrate: A facile approach for H. pylori eradication. Int J Biol Macromol 89:622–631

    PubMed  CAS  Google Scholar 

  84. Pawar SN, Edgar KJ (2012) Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 33(11):3279–3305. https://doi.org/10.1016/j.biomaterials.2012.01.007

    Article  PubMed  CAS  Google Scholar 

  85. Gurikov P, Smirnova I (2018) Non-conventional methods for gelation of alginate. Gels 4(1):14

    PubMed Central  Google Scholar 

  86. Rassis D, Saguy I, Nussinovitch A (2002) Collapse, shrinkage and structural changes in dried alginate gels containing fillers. Food Hydrocolloids 16(2):139–151

    CAS  Google Scholar 

  87. Chen C-K, Liao M-G, Wu Y-L, Fang Z-Y, Chen J-A (2020) Preparation of Highly Swelling/Antibacterial Cross-Linked N-Maleoyl-Functional Chitosan/Polyethylene Oxide Nanofiber Meshes for Controlled Antibiotic Release. Mol Pharm 17(9):3461–3476. https://doi.org/10.1021/acs.molpharmaceut.0c00504

    Article  PubMed  CAS  Google Scholar 

  88. Chen C-K, Lee M-C, Lin Z-I, Lee C-A, Tung Y-C, Lou C-W, Law W-C, Chen N-T, Lin K-YA, Lin J-H (2018) Intensifying the antimicrobial activity of poly [2-(tert-butylamino) ethyl methacrylate]/polylactide composites by tailoring their chemical and physical structures. Mol Pharm 16(2):709–723

    Google Scholar 

  89. Su Y, Wang H, Mishra B, Lakshmaiah Narayana J, Jiang J, Reilly DA, Hollins RR, Carlson MA, Wang G, Xie J (2019) Nanofiber dressings topically delivering molecularly engineered human cathelicidin peptides for the treatment of biofilms in chronic wounds. Mol Pharm 16(5):2011–2020

    PubMed  CAS  Google Scholar 

  90. Mangadlao JD, Santos CM, Felipe MJ, de Leon AC, Rodrigues DF, Advincula RC (2015) On the antibacterial mechanism of graphene oxide (GO) Langmuir-Blodgett films. Chem Commun (Camb) 51(14):2886–2889. https://doi.org/10.1039/c4cc07836e

    Article  CAS  Google Scholar 

  91. Shao W, Liu X, Min H, Dong G, Feng Q, Zuo S (2015) Preparation, characterization, and antibacterial activity of silver nanoparticle-decorated graphene oxide nanocomposite. ACS Appl Mater Interfaces 7(12):6966–6973. https://doi.org/10.1021/acsami.5b00937

    Article  PubMed  CAS  Google Scholar 

  92. Nanda SS, Yi DK, Kim K (2016) Study of antibacterial mechanism of graphene oxide using Raman spectroscopy. Sci Rep 6:28443. https://doi.org/10.1038/srep28443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Yadollahi M, Namazi H, Aghazadeh M (2015) Antibacterial carboxymethyl cellulose/Ag nanocomposite hydrogels cross-linked with layered double hydroxides. Int J Biol Macromol 79:269–277

    PubMed  CAS  Google Scholar 

  94. Obaidat RM, Alnaief M, Mashaqbeh H (2018) Investigation of Carrageenan Aerogel Microparticles as a Potential Drug Carrier. AAPS Pharm Sci Tech:1–11

Download references

Acknowledgements

Authors gratefully acknowledge the University of Tabriz (grant # 9519645002) and RCPN of Tabriz University of Medical Science for the financial supports of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Namazi.

Ethics declarations

Conflicts of interest

Authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 32641 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimzadeh, Z., Namazi, H. Nontoxic double-network polymeric hybrid aerogel functionalized with reduced graphene oxide: Preparation, characterization, and evaluation as drug delivery agent. J Polym Res 29, 37 (2022). https://doi.org/10.1007/s10965-022-02902-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-02902-0

Keywords

Navigation