Skip to main content
Log in

High-density polyethylene/carbon nanotubes composites: Investigation on the factors responsible for the fracture formation under tensile loading

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Different concentrations (0.1, 0.2, 0.5, and 1 wt%) of OH-functionalized carbon nanotubes (CNTs) were used to prepare high-density polyethylene (HDPE) based composites via melt blending in the presence of a maleinized polyethylene (PE-g-MA) as a coupling agent. The mechanical behaviour of the produced HDPE/CNT composites was investigated in view of their possible application as reinforced materials in the civil structures and understood in terms of the structural modifications produced by the incorporation of CNTs in the HDPE matrix. The dispersion of CNTs in the polymer matrix, a key parameter to the ends of the mechanical performance of the composites, was evaluated at different observation scales, from few micrometers to some millimeters, by means of transmission electron microscopy (TEM), micro-Raman spectroscopy (MRS) and acoustic image analysis. The comparative discussion of the results obtained allowed clarifying the reason for the lack of a net improvement in the mechanical behaviour of the composites with respect to the pristine polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Blond E, Boyle S, Ferrara M, Herlin B, Plusquellec H, Rimoldi P, Stark T (2019) Applications of Geosynthetics to Irrigation, Drainage and Agriculture. Irrig and Drain 68:67–83. https://doi.org/10.1002/ird.2300

    Article  Google Scholar 

  2. Touze-Foltz N, Bannour H, Barral C, Stoltz G (2016) A review of the performance of geosynthetics for environmental protection. Geotext Geomembr 44:656–672. https://doi.org/10.1016/j.geotexmem.2016.05.008

    Article  Google Scholar 

  3. Christopher BR (2014) Cost savings by using geosynthetics in the construction of civil works projects. Proceedings of the 10th International Conference on Geosynthetics, 10ICG, Berlin, Germany, 21–25

  4. Brandl H (2011) Geosynthetics applications for the mitigation of natural disasters and for environmental protection. Geosynth Int 18:340–390. https://doi.org/10.1680/gein.2011.18.6.340

    Article  Google Scholar 

  5. Koseki J (2012) Use of geosynthetics to improve seismic performance of earth structures. Geotext Geomembr 34:51–68. https://doi.org/10.1016/j.geotexmem.2012.03.001

    Article  Google Scholar 

  6. Koffler A, Choura M, Bendriss A, Zengerink E (2008) Geosynthetics in protection against erosion for river and coastal banks and marine and hydraulic construction. J Coas Conserv 12:11–17. https://doi.org/10.1007/s11852-008-0023-x

    Article  Google Scholar 

  7. Yang SH, Al-Quadi IL (2007) Cost-effectiveness of using geotextiles in flexible pavements. Geosynth Int 14:2–12. https://doi.org/10.1680/gein.2007.14.1.2

    Article  Google Scholar 

  8. Cardile G, Pisano M (2020) Advances in soil reinforcement with geosynthetics: from laboratory tests to design practice. Riv Ital Geotec 54:52–82. https://doi.org/10.19199/2020.3.0557-1405.052.

  9. Palmeira EM, Tatsuoka F, Bathurst RB, Stevenson PE, Zornberg JG (2008) Advances in geosynthetics materials and applications for soil reinforcement and environmental protection work. Electron J Geotech Eng 13:1–38

    Google Scholar 

  10. Bergado DT, Chai JC (1994) Pullout force/displacement relationship of extensible grid reinforcements. Geotext Geomembr 13:295–316. https://doi.org/10.1016/0266-1144(94)90025-6

    Article  Google Scholar 

  11. Cardile G, Pisano M, Moraci N (2019) The influence of a cyclic loading history on soil-geogrid interaction under pullout condition. Geotext Geomembr 47:552–565. https://doi.org/10.1016/j.geotexmem.2019.01.012

    Article  Google Scholar 

  12. Cardile G, Pisano M, Moraci N (2020) A Predictive Model for Pullout Bearing Resistance of Geogrids Embedded in a Granular Soil. In: Calvetti, F., Cotecchia, F., Galli, A., Jommi, C. (Eds.), Geotechnical Research for Land Protection and Development. Springer International Publishing, Cham, Lecture Notes in Civil Engineering 40:438–445. https://doi.org/10.1007/978-3-030-21359-6

  13. Moraci N, Cardile G, Pisano M (2017) Soil-geosynthetic interface behaviour in the anchorage zone [Comportamento all’interfaccia terreno-geosintetico nella zona di ancoraggio]. Riv Ital di Geotec 51:5–25

    Google Scholar 

  14. Pisano M, Cardile G, Moraci N (2019) Soil-geogrid interface behaviour under cyclic pullout conditions. In: Silvestri F, Moraci N (eds) Earthquake geotechnical engineering for protection and development of environment and constructions, 7th lnternational Conference on Earthquake Geotechnical Engineering (Roma, 17–20 Giugno 2019). CRC Press, Boca Raton, London, New York, pp 4507–4514

    Google Scholar 

  15. Sieira ACCF, Gerscovich DMS, Sayao ASFJ (2009) Displacement and load transfer mechanisms of geogrids under pullout condition. Geotext Geomembr 27:241–253. https://doi.org/10.1016/j.geotexmem.2008.11.012

    Article  Google Scholar 

  16. Palmeira EM (2009) Soil–geosynthetic interaction: Modelling and analysis. Geotext Geomembr 27:368–390. https://doi.org/10.1016/j.geotexmem.2009.03.003

    Article  Google Scholar 

  17. Perkins SW (1999) Mechanical Response of Geosynthetic-Reinforced Flexible Pavements. Geosynth Int 6:347–382. https://doi.org/10.1680/gein.6.0157

    Article  Google Scholar 

  18. Tatsuoka F, Tateyama M, Koseki J, Yonezawa T (2014) Geosynthetic-reinforced soil structures for railways in Japan. Transp Infrastruct Geotechnol 1:3–53. https://doi.org/10.1007/s40515-013-0001-0

    Article  Google Scholar 

  19. Zornberg JG (2017) Functions and applications of geosynthetics in roadways. Procedia Eng 189:298–306. https://doi.org/10.1016/j.proeng.2017.05.048

    Article  Google Scholar 

  20. Jewell RA (1988) The mechanics of reinforced embankments on soft soil. Geotext Geomembr 7:237–273. https://doi.org/10.1016/0266-1144(88)90001-5

    Article  Google Scholar 

  21. Eekelen SJMV, Han J (2020) Geosynthetic-reinforced pile-supported embankments: state of the art. Geosynth Int 27:112–141. https://doi.org/10.1680/jgein.20.00005

    Article  Google Scholar 

  22. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Mater Sci Eng R 63:100–125. https://doi.org/10.1016/j.mser.2008.09.002

  23. Molinari N, Sutton AP, Mostofi AA (2018) Mechanisms of reinforcement in polymer nanocomposites. Phys Chem Chem Phys 20:23085–23094. https://doi.org/10.1039/C9NR06952F

    Article  CAS  PubMed  Google Scholar 

  24. Santangelo S, Gorrasi G, Di Lieto R, De Pasquale S, Patimo G, Piperopoulos E, Lanza M, Faggio G, Mauriello F, Messina G, Milone C (2011) Polylactide and carbon nanotubes/smectite-clay nanocomposites: preparation, characterization, sorptive and electrical properties. Appl Clay Sci 53:188–194. https://doi.org/10.1016/j.clay.2010.12.013

    Article  CAS  Google Scholar 

  25. Alberola N, Cavaille JY, Perez J (1992) Mechanical γ and β relaxations in polyethylene—I. Glass transitions of polyethylene. Eur Polym J 28(8):935–948.

  26. Dannis ML (1959) Thermal expansion measurements and transition temperatures, first and second order. Rubber Chem Technol 32(4):1005–1015

    Article  Google Scholar 

  27. Gray RW, McCrum NG (1969) Origin of the γ relaxations in polyethylene and polytetrafluoroethylene. J Polym Sci A-2 7(8):1329–1355

  28. Simon J, Beatty CL, Karasz FE (1975) DSC study of the effect of irradiation upon the glass transition temperature (Tg) of polyethylene. J Therm Anal 7:187–190

    Article  CAS  Google Scholar 

  29. Stehling FC, Mandelkern L (1970) The glass temperature of linear polyethylene. Macromolecules 3(2):242–252

    Article  CAS  Google Scholar 

  30. Ward IM, Sweeney J (2013) Mechanical properties of solid polymers, 3rd edn. John Wiley & Sons Ltd, London, p 461

    Google Scholar 

  31. ISO/TR 20432 (2007) Guidelines to the determination of long-term strength of geosynthetics for soil reinforcement. International Organization for Standardization, ISO, Ginevra

  32. UNI EN ISO 13431 (2002) Geotessili e prodotti affini - Determinazione delle proprietà di viscosità a trazione (tensile creep) e comportamento a rottura (creep rupture). Ente Nazionale Italiano di Unificazione, Milano

  33. ASTM D5262–07 (2016) Standard test method for evaluating the unconfined tension creep and creep rupture behavior of geosynthetics. ASTM International, West Conshohocken, PA, USA

  34. UNI EN ISO 10319 (2015) Geosynthetics – Wide-width tensile test. - Geosintetici - Prova di trazione a banda larga. Ente Nazionale Italiano di Unificazione, Milano

  35. Cardile G, Pisano M, Recalcati P, Moraci N (2021) A new apparatus for the study of pullout behaviour of soil-geosynthetic interfaces under sustained load over time. Geotext Geomembr 49:1519-1528. https://doi.org/10.1016/j.geotexmem.2021.07.001

    Article  Google Scholar 

  36. Coleman JN, Khan U, Gun’ko YK (2006) Mechanical reinforcement of polymer using carbon nanotubes. Adv Mater 18:689–706. https://doi.org/10.1002/adma.200501851

    Article  CAS  Google Scholar 

  37. Wang Y, Li Y, Zhang R, Huang L, He W (2006) Synthesis and Characterization of Nanosilica/Polyacrylate Composite Latex. Polym Compos 27:282–288. https://doi.org/10.1002/pc.20200

    Article  CAS  Google Scholar 

  38. Peresin MS, Habibi Y, Zoppe JO, Pawlak JJ, Rojas OJ (2010) Nanofiber Composites of Polyvinyl Alcohol and Cellulose Nanocrystals: Manufacture and Characterization. Biomacromolecules 11:674–681. https://doi.org/10.1021/bm901254n

    Article  CAS  PubMed  Google Scholar 

  39. Yan DX, Pang H, Li B, Vajtai R, Xu L, Ren PG, Wang JH, Li ZM (2015) Structured Reduced Graphene Oxide/Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding. Adv Funct Mater 25:559–566. https://doi.org/10.1002/adfm.201403809

    Article  CAS  Google Scholar 

  40. Salvetat JP, Bonard JM, Thomson NH, Kulik AJ, Forrò L, Benoit W, Zuppiroli L (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69:255–260. https://doi.org/10.1007/s003390050999

    Article  CAS  Google Scholar 

  41. Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science 277:1971–1975. https://doi.org/10.1126/science.277.5334.1971

    Article  CAS  Google Scholar 

  42. Salvetat JP, Kulik AJ, Bonard JM, Briggs GAD, Stockli T, Metenier K, Bonnamy S, Beguin F, Burnham NA, Forro L (1999) Elastic Modulus of Ordered and Disordered Multiwalled Carbon Nanotubes. Adv Mater 11:161–165. https://doi.org/10.1002/(SICI)1521-4095(199902)11:2%3c161::AID-ADMA161%3e3.0.CO;2-J

    Article  CAS  Google Scholar 

  43. Li Y, Wang K, Wei J, Gu Z, Wang Z, Luo J, Wu D (2005) Tensile properties of long aligned double-walled carbon nanotube strands. Carbon 43:31–35. https://doi.org/10.1016/j.carbon.2004.08.017

    Article  CAS  Google Scholar 

  44. Salvetat JP, Briggs GAD, Bonard JM, Bacsa RR, Kulik AJ, Stockli T, Burnham NA, Forro L (1999) Elastic and Shear Moduli of Single-Walled Carbon Nanotube Ropes. Phys Rev Lett 82:944–947. https://doi.org/10.1103/PhysRevLett.82.944

    Article  CAS  Google Scholar 

  45. Ferreira FV, Francisco W, Menezes BRC, Brito FS, Coutinho AS, Cividanes LS, Coutinho AR, Thim GP (2016) Correlation of surface treatment, dispersion and mechanical properties of HDPE/CNT nanocomposites. Appl Surf Sci 389:921–929. https://doi.org/10.1016/j.apsusc.2016.07.164

    Article  CAS  Google Scholar 

  46. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867. https://doi.org/10.1016/j.progpolymsci.2010.03.002

    Article  CAS  Google Scholar 

  47. Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MSA, Simoes JAO (2007) Mechanical properties of high-density polyethylene/carbon nanotube composites. Compos Sci Technol 67:3071–3077. https://doi.org/10.1016/j.compscitech.2007.04.024

  48. Morcom M, Atkinson K, Simon GP (2010) The effect of carbon nanotube properties on the degree of dispersion and reinforcement of high density polyethylene. Polymer 51:3540–3550. https://doi.org/10.1016/j.polymer.2010.04.053

    Article  CAS  Google Scholar 

  49. Arash B, Wang Q, Varadan VK (2014) Mechanical properties of carbon nanotube/polymer composites. Sci Rep 4:6479. https://doi.org/10.1038/srep06479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mora A, Verma P, Kumar S (2020) Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modelling. Compos B 183:107600. https://doi.org/10.1016/j.compositesb.2019.107600

    Article  CAS  Google Scholar 

  51. Qian J, Pu JH, Zha XJ, Bao RY, Liu ZY, Yang MB, Yang W (2019) Effect of aspect ratio of multi-wall carbon nanotubes on the dispersion in ethylene-α-octene block copolymer and the properties of the Nanocomposites. J Polym Res 26:275. https://doi.org/10.1007/s10965-019-1915-1

    Article  CAS  Google Scholar 

  52. Zhao Q, Wagner HD (2004) Raman spectroscopy of carbon-nanotube-based composites. Phil Trans R Soc Lond A 362:2407–2424. https://doi.org/10.1098/rsta.2004.1447

    Article  CAS  Google Scholar 

  53. Mu M, Osswald S, Gogotsi Y, Winey KI (2009) An in situ Raman spectroscopy study of stress transfer between carbon nanotubes and polymer. Nanotechnology 20:335703. https://doi.org/10.1088/0957-4484/20/33/335703

    Article  CAS  PubMed  Google Scholar 

  54. Salvatierra RV, Moura LG, Oliveira MM, Pimenta MA, Zarbin AJG (2012) Resonant Raman spectroscopy and spectroelectrochemistry characterization of carbon nanotubes/polyaniline thin film obtained through interfacial polymerization. J Raman Spectrosc 43:1094–1100. https://doi.org/10.1002/jrs.3144

    Article  CAS  Google Scholar 

  55. Bounos G, Andrikopoulos KS, Karachalios TK, Voyiatzis GA (2014) Evaluation of multi-walled carbon nanotube concentrations in polymer nanocomposites by Raman spectroscopy. Carbon 76:301–309. https://doi.org/10.1016/j.carbon.2014.04.081

    Article  CAS  Google Scholar 

  56. http://www.cheaptubesinc.com

  57. Ting SS, Achmad NK, Ismail H, Santiagoo RR, Zulkepli NN (2015) Thermal degradation of high-density polyethylene/soya spent powder blends. J Polym Eng 35:437–442. https://doi.org/10.1515/polyeng-2014-0095

    Article  CAS  Google Scholar 

  58. Yang J, Lin Y, Wang J, Lai M, Li J, Liu J, Tong X, Cheng H (2005) Morphology, Thermal Stability, and Dynamic Mechanical Properties of Atactic Polypropylene/Carbon Nanotube Composites. J Appl Polym Sci 98:1087–1091. https://doi.org/10.1002/app.21206

    Article  CAS  Google Scholar 

  59. Zhao L, Song P, Cao Z, Fang Z, Guo Z (2012) Thermal Stability and Rheological Behaviors of High-Density Polyethylene/Fullerene Nanocomposites. J Nanomater 6pp. https://doi.org/10.1155/2012/340962

  60. Santangelo S, Lanza M, Milone C (2013) Evaluation of the Overall Crystalline Quality of Amorphous Carbon Containing Multiwalled Nanotubes. J Phys Chem C 117:4815–4823. https://doi.org/10.1021/jp310014w

    Article  CAS  Google Scholar 

  61. Milone C, Shahul Hameed AR, Piperopoulos E, Santangelo S, Lanza M, Galvagno S (2011) Catalytic wet air oxidation of p-coumaric acid over carbon nanotubes and activated carbon. Ind Eng Chem Res 50:9043–9053. https://doi.org/10.1021/ie200492g

    Article  CAS  Google Scholar 

  62. Pócsik I, Hundhausen M, Koós M, Ley L (1998) Origin of the D peak in the Raman spectrum of microcrystalline graphite. J Non-Cryst Solids 227:1083–1086

    Article  Google Scholar 

  63. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99. https://doi.org/10.1016/j.physrep.2004.10.006

    Article  Google Scholar 

  64. Ferrari AC, Robertson J (2001) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095. https://doi.org/10.1103/PhysRevB.61.14095

    Article  Google Scholar 

  65. Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Speziali NL, Jorio A, Pimenta MA (2008) Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon 46:272–275. https://doi.org/10.1016/j.carbon.2007.11.015

    Article  CAS  Google Scholar 

  66. Kim YA, Hayashi T, Osawa K, Dresselhaus MS, Endo M (2003) Annealing effect on disordered multi-wall carbon nanotubes. Chem Phys Lett 380:319. https://doi.org/10.1016/j.cplett.2003.09.027

    Article  CAS  Google Scholar 

  67. Greco C, Cosentino U, Pitea D, Moro G, Santangelo S, Patané S, D’Arienzo M, Fiore M, Morazzoni F, Ruffo R (2019) Role of the carbon defects in the catalytic oxygen reduction by graphite nanoparticles: a spectromagnetic, electrochemical and computational integrated approach. Phys Chem Chem Phys 21:6021. https://doi.org/10.1039/C8CP07023G

    Article  CAS  PubMed  Google Scholar 

  68. Santangelo S, Messina G, Faggio G, Lanza M, Milone C (2011) Evaluation of crystalline perfection degree of multi-walled carbon nanotubes: correlations between thermal kinetic analysis and micro-Raman spectroscopy. J Raman Spectrosc 42:593–602. https://doi.org/10.1002/jrs.2766

    Article  CAS  Google Scholar 

  69. Murphy H, Papakonstantinou P, Okpalugo TT (2006) Raman study of multiwalled carbon nanotubes functionalized with oxygen groups. J Vac Sci Technol B 24:715–720. https://doi.org/10.1116/1.2180257

    Article  CAS  Google Scholar 

  70. Kida T, Hiejima Y, Nitta K (2016) Raman Spectroscopic Study of High-density Polyethylene during Tensile Deformation. Int J Exp Spectroscopic Tech 1:1. https://doi.org/10.35840/2631-505X/8501

  71. Sato H, Shimoyama M, Kamiya T, Amari T, Sasic S, Ninomiya T, Siesler HW, Ozaki Y (2002) Raman Spectra of High-Density, Low-Density, and Linear Low-Density Polyethylene Pellets and Prediction of Their Physical Properties by Multivariate Data Analysis. J Appl Polym Sci 86:443–448. https://doi.org/10.1002/app.10999

    Article  CAS  Google Scholar 

  72. Ibrahim M, He H, Thermo Fisher Scientific (2017) Classification of polyethylene by Raman spectroscopy, Thermoscientific

  73. Salah N, Alfawzan AM, Saeed A, Alshahrie A, Alla W (2019) Effective reinforcements for thermoplastics based on carbon nanotubes of oil fly ash. Sci Rep 9:20288–20301. https://doi.org/10.1038/s41598-019-56777-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. ASTM D6637 (2015) Standard Test Method for Determining Tensile Properties of Geogrids by the Single or Multi-Rib Tensile Method. ASTM International, West Conshohocken, PA, USA

  75. Bathurst RJ, Cai Z (1994) In-Isolation cyclic load-extension behavior of two geogrids. Geosynth Int 1:1–19. https://doi.org/10.1680/gein.1.0001

    Article  CAS  Google Scholar 

  76. Cardile G, Moraci N, Pisano M (2017) Tensile behaviour of an HDPE geogrid under cyclic loading: Experimental results and empirical modelling. Geosynth Int 24:95–112. https://doi.org/10.1680/jgein.16.00019

    Article  Google Scholar 

  77. Cardile G, Moraci N, Pisano M (2016) In-air tensile load-strain behaviour of HDPE geogrids under cyclic loading. Procedia Eng 158:266–271. https://doi.org/10.1016/j.proeng.2016.08.440

    Article  CAS  Google Scholar 

  78. Levin VM, Petronyuk YS, Morokov ES, Celzard A, Bellucci S, Kuzhir PP (2015) What does see the impulse acoustic microscopy inside nanocomposites?. Phys Procedia 70:703–706. https://doi.org/10.1016/j.phpro.2015.08.094

    Article  CAS  Google Scholar 

  79. Levin V, Petronyuk Y, Morokov E, Chernozatonskii L, Kuzhir P, Fierro V, Celzard A, Mastrucci M, Tabacchioni I, Bistarelli S, Bellucci S (2016) The cluster architecture of carbon in polymer nanocomposites observed by impulse acoustic microscopy. Phys Status Solidi B 253:1952–1959. https://doi.org/10.1002/pssb.201600077

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding authors

Correspondence to S. Santangelo or N. Moraci.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 617 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triolo, C., Cardile, G., Pisano, M. et al. High-density polyethylene/carbon nanotubes composites: Investigation on the factors responsible for the fracture formation under tensile loading. J Polym Res 28, 454 (2021). https://doi.org/10.1007/s10965-021-02807-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02807-4

Keywords

Navigation