Skip to main content
Log in

Study the characteristics of novel ionic liquid functionalized graphene oxide on the mechanical and thermal properties of silicone rubber nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the present work, we investigated the effect of ionic liquid (1 ethyl 3-methylimidazolium dicyanamide) modified graphene oxide (ILGO) on the mechanical and thermal behaviour of silicone rubber (QM) nanocomposites. Silicone rubber nanocomposites (QMILGO) were prepared by the conventional two roll mixing method. The interactions of ILGO and silicone rubber nanocomposites have been investigated using Fourier- transform infrared spectroscopy, Raman spectroscopy, Dynamical mechanical analysis and thermal conductivity measurements. The surface treatment of graphene oxide with IL resulted in significant changes in the mechanical and thermal properties of nanocomposites, which can be attributed to increased filler–polymer interaction. Study show that the inclusion of ILGO led to an 18% improvement in mechanical properties and a 10% enhancement in thermal stability of QMILGO nanocomposites. Thermal conductivity studies and dynamical mechanical analyses (DMA) of composites indicate that QMILGO 1.5 nanocomposite obtained maximum thermal conductivity (28% improvement), and dynamic mechanical behaviour as compared to neat QM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Cherney EA (2005) Silicone rubber dielectrics modified by inorganic fillers for outdoor high voltage insulation applications. Annu Rep Conf Electr Insul Dielectr Phenomena CEIDP 2005(6):1–9. https://doi.org/10.1109/CEIDP.2005.1560607

  2. Sarath PS et al (2005) Fabrication of exfoliated graphite reinforced silicone rubber composites-Mechanical, tribological and dielectric properties. Polym Test 89. https://doi.org/10.1016/j.polymertesting.2020.106601

  3. Chen J, Liu J, Yao Y, Chen S (2020) Effect of microstructural damage on the mechanical properties of silica nanoparticle-reinforced silicone rubber composites. Eng Fract Mech 235:107195. https://doi.org/10.1016/j.engfracmech.2020.107195

  4. Su JF et al (2017) Preparation and physicochemical properties of microcapsules containing phase-change material with graphene/organic hybrid structure shells. J Mater Chem A 5(45):23937–23951. https://doi.org/10.1039/c7ta06980d

    Article  CAS  Google Scholar 

  5. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ (2013) The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon N Y 53:38–49. https://doi.org/10.1016/j.carbon.2012.10.013

    Article  CAS  Google Scholar 

  6. Jang JY, Kim MS, Jeong HM, Shin CM (2009) Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator. Compos Sci Technol 69(2):186–191. https://doi.org/10.1016/j.compscitech.2008.09.039

    Article  CAS  Google Scholar 

  7. Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon N Y 47(15):3538–3543. https://doi.org/10.1016/j.carbon.2009.08.022

    Article  CAS  Google Scholar 

  8. Chen L et al (2012) Enhanced epoxy/silica composites mechanical properties by introducing graphene oxide to the interface. ACS Appl Mater Interfaces 4(8):4398–4404. https://doi.org/10.1021/am3010576

    Article  PubMed  CAS  Google Scholar 

  9. Yang Z, Peng H, Wang W, Liu T (2010) Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci 116(5):2658–2667. https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  10. Zhao Y, Tang GS, Yu ZZ, Qi JS (2012) The effect of graphite oxide on the thermoelectric properties of polyaniline. Carbon N Y 50(8):3064–3073. https://doi.org/10.1016/j.carbon.2012.03.001

    Article  CAS  Google Scholar 

  11. Liu X, Kuang W, Guo B (2015) Preparation of rubber/graphene oxide composites with in-situ interfacial design. Polymer (Guildf) 56:553–562. https://doi.org/10.1016/j.polymer.2014.11.048

    Article  CAS  Google Scholar 

  12. Pringle JM, Ngamna O, Lynam C, Wallace GG, Forsyth M, MacFarlane DR (2007) Conducting polymers with fibrillar morphology synthesized in a biphasic ionic liquid/water system. Macromolecules 40(8):2702–2711. https://doi.org/10.1021/ma062483i

    Article  CAS  Google Scholar 

  13. Kreyenschulte H et al (2012) Interaction of 1-allyl-3-methyl-imidazolium chloride and carbon black and its influence on carbon black filled rubbers. Carbon N Y 50(10):3649–3658. https://doi.org/10.1016/j.carbon.2012.03.037

    Article  CAS  Google Scholar 

  14. Tasviri M, Ghasemi S, Ghourchian H, Gholami MR (2013) Ionic liquid/graphene oxide as a nanocomposite for improving the direct electrochemistry and electrocatalytic activity of glucose oxidase. J Solid State Electrochem 17(1):183–189. https://doi.org/10.1007/s10008-012-1858-5

    Article  CAS  Google Scholar 

  15. Subramaniam K, Das A, Häußler L, Harnisch C, Stöckelhuber KW, Heinrich G (2012) Enhanced thermal stability of polychloroprene rubber composites with ionic liquid modified MWCNTs. Polym Degrad Stab 97(5):776–785. https://doi.org/10.1016/j.polymdegradstab.2012.02.001

    Article  CAS  Google Scholar 

  16. Kumar V, Alam MN, Manikkavel A, Choi J, Lee DJ (2021) Investigation of silicone rubber composites reinforced with carbon nanotube, nanographite, their hybrid, and applications for flexible devices. J Vinyl Addit Technol 27(2):254–263. https://doi.org/10.1002/vnl.21799

    Article  CAS  Google Scholar 

  17. Yang YK et al (2012) Non-covalently modified graphene sheets by imidazolium ionic liquids for multifunctional polymer nanocomposites. J Mater Chem 22(12):5666–5675. https://doi.org/10.1039/c2jm16006d

    Article  CAS  Google Scholar 

  18. Subramaniam K, Das A, Steinhauser D, Klüppel M, Heinrich G (2011) Effect of ionic liquid on dielectric, mechanical and dynamic mechanical properties of multi-walled carbon nanotubes/polychloroprene rubber composites. Eur Polym J 47(12):2234–2243. https://doi.org/10.1016/j.eurpolymj.2011.09.021

    Article  CAS  Google Scholar 

  19. Kosowska K, Domalik-Pyzik P, Nocuń M, Chłopek J (2018) Chitosan and graphene oxide/reduced graphene oxide hybrid nanocomposites – Evaluation of physicochemical properties. Mater Chem Phys 216:28–36. https://doi.org/10.1016/j.matchemphys.2018.05.076

    Article  CAS  Google Scholar 

  20. Sarath PS, Moni G, George JJ, Haponiuk JT, Thomas S, George SC (2021) A study on the influence of reduced graphene oxide on the mechanical, dynamic mechanical and tribological properties of silicone rubber nanocomposites. J Compos Mater 55(15):2011–2024. https://doi.org/10.1177/0021998320981608

    Article  CAS  Google Scholar 

  21. Moni G, Mayeen A, Mohan A, George JJ, Thomas S, George SC (2018) Ionic liquid functionalised reduced graphene oxide fluoroelastomer nanocomposites with enhanced mechanical, dielectric and viscoelastic properties. Eur Polym J 109:277–287. https://doi.org/10.1016/j.eurpolymj.2018.09.057

    Article  CAS  Google Scholar 

  22. Moni G et al (2020) Influence of exfoliated graphite inclusion on the thermal, mechanical, dielectric and solvent transport characteristics of fluoroelastomer nanocomposites. J Polym Res. https://doi.org/10.1007/s10965-020-2040-x

    Article  Google Scholar 

  23. Pino-Ramos VH, Alvarez-Lorenzo C, Concheiro A, Bucio E (2017) One-step grafting of temperature-and pH-sensitive (N-vinylcaprolactam-co-4- vinylpyridine) onto silicone rubber for drug delivery. Des Monomers Polym 20(1):33–41. https://doi.org/10.1080/15685551.2016.1231033

    Article  PubMed  CAS  Google Scholar 

  24. Hernández M, del Mar Bernal M, Verdejo R, Ezquerra TA, López-Manchado MA (2012) Overall performance of natural rubber/graphene nanocomposites. Compos Sci Technol 73(1):40–46. https://doi.org/10.1016/j.compscitech.2012.08.012

    Article  CAS  Google Scholar 

  25. Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH (2007) Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos Sci Technol 67(9):1813–1822. https://doi.org/10.1016/j.compscitech.2006.10.021

    Article  CAS  Google Scholar 

  26. Zhan Y, Yang X, Guo H, Yang J, Meng F, Liu X (2012) Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability. J Mater Chem 22(12):5602–5608. https://doi.org/10.1039/c2jm15780b

    Article  CAS  Google Scholar 

  27. Xing W, Wu J, Huang G, Li H, Tang M, Fu X (2014) Enhanced mechanical properties of graphene/natural rubber nanocomposites at low content. Polym Int 63(9):1674–1681. https://doi.org/10.1002/pi.4689

    Article  CAS  Google Scholar 

  28. Xiong X, Wang J, Jia H, Fang E, Ding L (2013) Structure, thermal conductivity, and thermal stability of bromobutyl rubber nanocomposites with ionic liquid modified graphene oxide. Polym Degrad Stab 98(11):2208–2214. https://doi.org/10.1016/j.polymdegradstab.2013.08.022

    Article  CAS  Google Scholar 

  29. Xu X, Chen J, Zhou J, Li B (2018) Thermal Conductivity of Polymers and Their Nanocomposites. Adv Mater 30(17):1–10. https://doi.org/10.1002/adma.201705544

    Article  CAS  Google Scholar 

  30. Bartlett MD et al (2017) High thermal conductivity in soft elastomers with elongated liquid metal inclusions. Proc Natl Acad Sci U S A 114(9):2143–2148. https://doi.org/10.1073/pnas.1616377114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

DRDO (Order No: ERIP/ER/1504758/M/01/1667), New Delhi, India is greatly acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soney C. George.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarath, P.S., Pahovnik, D., Utroša, P. et al. Study the characteristics of novel ionic liquid functionalized graphene oxide on the mechanical and thermal properties of silicone rubber nanocomposites. J Polym Res 28, 446 (2021). https://doi.org/10.1007/s10965-021-02806-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02806-5

Keywords

Navigation