Skip to main content

Advertisement

Log in

Thermal, mechanical and degradation properties of flexible poly (1,3-trimethylene carbonate)/poly (L-lactide-co-ε-caprolactone) blends

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The material used for soft tissue should be flexible and elastic. Poly (1,3-trimethylene carbonate) (PTMC) and poly (L-lactide-co-ε-caprolactone) (PLCL) were flexible and elastic bioabsorbable polymers. PLCL of various content (10, 20, 30, 40, and 50 wt%) was blended into PTMC by the solution co-precipitation method to improve the mechanical properties and adjust the degradation rate of PTMC. The thermal, mechanical, and degradation properties of PTMC/PLCL blends were studied. FTIR showed that the blend of PTMC and PLCL was a physical process. The morphology of fracture surfaces showed that the compatibility of PTMC and PLCL changed with the composition. There was obvious phase separation in PTMC/PLCL (50/50). PTMC / PLCL blends had two glass transition temperatures. The compatibility observed by DSC was consistent with the results of the SEM images of the fracture surfaces. PTMC / PLCL (70/30) had the largest tensile strength up to 19.0 Mpa. The elastic modulus of the blends didn’t change very much with their composition. Compared with pure PTMC, PTMC/PLCL blends showed a higher rate of degradation. However, the PTMC/PLCL blend can provide higher mechanical strength than PTMC during the 12-week degradation period. Meanwhile, cell experiments showed that the PTMC/PLCL blend was non-toxic and didn’t affect the growth and proliferation of the cell. Therefore, PTMC/PLCL with suitable flexibility and elasticity, excellent biocompatibility, and inherent biodegradability can provide a promising alternative choice for the application of soft tissue implants, such as a ureteral stent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Baskin LS (2000) Hypospadias and urethral development. J Urol 163(3):951–956

    CAS  Google Scholar 

  2. Largo RD, Tchang LAH, Mele V, Scherberich A, Harder Y, Wettstein R, Schaefer DJ (2014) Efficacy, safety and complications of autologous fat grafting to healthy breast tissue: A systematic review. J Plast Reconstr Aes 67(4):437–448

    Google Scholar 

  3. Chen QZ, Liang SL, Thouas GA (2013) Elastomeric biomaterials for tissue engineering. Prog Polym Sci 38(3–4):584–671

    CAS  Google Scholar 

  4. Vedadghavami A, Minooei F, Mohammadi MH, Khetani S, Kolahchi AR, Mashayekhan S, Sanati-Nezhad A (2017) Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater 62:42–63

    CAS  PubMed  Google Scholar 

  5. Polo-Corrales L, Latorre-Esteves M, Ramirez-Vick JE (2014) Scaffold design for bone regeneration. J Nanosci Nanotechno 14(1):15–56

    CAS  Google Scholar 

  6. Lin HK, Madihally SV, Palmer B, Frimberger D, Fung KM, Kropp BP (2015) Biomatrices for bladder reconstruction. Adv Drug Deliver Rev 82–83:47–63

    Google Scholar 

  7. Orabi H, AbouShwareb T, Zhang Y, Yoo JJ, Atala A (2013) Cell-seeded tubularized scaffolds for reconstruction of long urethral defects: a preclinical study. Eur Urol 63(3):531–538

    PubMed  Google Scholar 

  8. Liu XL, Hou PJ, Liu S, Qi J, Feng SM, Zhang LF, Ma P, Bai W (2021) Effect of poly (lactic-co-glycolic acid) blend ratios on the hydrolytic degradation of poly (para-dioxanone). J Polym Res. https://doi.org/10.1007/s10965-021-02529-7

    Article  Google Scholar 

  9. Sinha P, Mathur S, Sharma P, Kumar V (2018) Potential of pine needles for PLA-based composites. Polym Compos 39(4):1339–1349

    CAS  Google Scholar 

  10. Raya-Rivera A, Esquiliano DR, Yoo JJ, Lopez-Bayghen E, Soker S, Atala A (2011) Tissue-engineered autologous urethras for patients who need reconstruction: an observational study. Lancet 377(9772):1175–1182

    PubMed  PubMed Central  Google Scholar 

  11. Joseph DB, Borer JG, De Filippo RE, Hodges SJ, McLorie GA (2014) Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: phase II study in children and adolescents with spina bifida. J Urol 191(5):1389–1394

    CAS  Google Scholar 

  12. Fukushima K (2016) Poly (trimethylene carbonate)-based polymers engineered for biodegradable functional biomaterials. Biomater Sci 4(1):9–24

    CAS  PubMed  Google Scholar 

  13. Park MH, Joo MK, Choi BG, Jeong B (2012) Biodegradable thermogels. Acc Chem Res 45(3):424–433

    CAS  Google Scholar 

  14. Pego AP, Van Luyn MJA, Brouwer LA, van Wachem PB, Poot AA, Grijpma DW, Feijen J (2003) In vivo behavior of poly (1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with D, L-lactide or epsilon-caprolactone: Degradation and tissue response. J Biomed Mater Res A 67A(3):1044–1054

    CAS  Google Scholar 

  15. Zhao H, Wang YL, Peng JR, Zhang L, Qu Y, Chu BY, Dong ML, Tan LW, Qian ZY (2017) Biodegradable self-assembled micelles based on MPEG-PTMC copolymers: an ideal drug delivery system for vincristine. J Biomed Nanotechnol 13(4):427–436

    CAS  PubMed  Google Scholar 

  16. Zhang C, Liu DH, Zhang XW, Wang P, Zhen Z, Li JX, Yi DX, Jin Y, Yang D (2015) Design and in vivo assessment of polyester copolymers based on trimethylene carbonate and epsilon-caprolactone. J Appl Polym Sci 132(16):7

    Google Scholar 

  17. Song Y, Wennink JWH, Kamphuis MMJ, Sterk LMT, Vermes I, Poot AA, Feijen J, Grijpma DW (2011) Dynamic culturing of smooth muscle cells in tubular poly (trimethylene carbonate) scaffolds for vascular tissue engineering. Tissue Eng Part A 17(3–4):381–387

    CAS  Google Scholar 

  18. Wach RA, Adamus A, Olejnik AK, Dzierzawska J, Rosiak JM (2013) Nerve guidance channels based on PLLA-PTMC biomaterial. J Appl Polym Sci 127(3):2259–2268

    CAS  Google Scholar 

  19. Rotman SG, Guo ZC, Grijpma DW, Poot AA (2017) Preparation and characterization of poly (trimethylene carbonate) and reduced graphene oxide composites for nerve regeneration. Polym Adv Technol 28(10):1233–1238

    CAS  Google Scholar 

  20. Montagna V, Takahashi J, Tsai M-Y, Ota T, Zivic N, Kawaguchi S, Kato T, Tanaka M, Sardon H, Fukushima K (2021) Methoxy-functionalized glycerol-based aliphatic polycarbonate: organocatalytic synthesis, blood compatibility, and hydrolytic property. Acs Biomater Sci Eng 7(2):472–481

    CAS  PubMed  Google Scholar 

  21. Dai M, Goudounet G, Zhao H, Garbay B, Garanger E, Pecastaings G, Schultze X, Lecommandoux S (2021) Thermosensitive hybrid elastin-like polypeptide-based ABC triblock hydrogel. Macromolecules 54(1):327–340

    CAS  Google Scholar 

  22. Pego AP, Poot AA, Grijpma DW, Feijen J (2001) Copolymers of trimethylene carbonate and epsilon-caprolactone for porous nerve guides: Synthesis and properties. J Biomat Sci-Polym E 12(1):35–53

    CAS  Google Scholar 

  23. Qi J, Feng SM, Liu XL, Xing LY, Chen DL, Xiong CD (2020) Morphology, thermal properties, mechanical property and degradation of PLGA/PTMC composites. J Polym Res 27(12):9

    Google Scholar 

  24. Jiang T, Zhang GQ, He WT, Li H, Jin X (2014) The tissue response and degradation of electrospun poly (epsilon-caprolactone)/poly (trimethylene-carbonate) scaffold in subcutaneous space of mice. J Nanomater. https://doi.org/10.1155/2014/837695

    Article  Google Scholar 

  25. Zhang Z, Kuijer R, Bulstra SK, Grijpma DW, Feijen J (2006) The in vivo and in vitro degradation behavior of poly (trimethylene carbonate). Biomaterials 27(9):1741–1748

    CAS  PubMed  Google Scholar 

  26. Chen K, Wang CM, Wang TJ, Zhu ZM, Ma RT, Jiang H (2020) Preparation and performances of form-stable polyethylene glycol/methylcellulose composite phase change materials. J Polym Res. https://doi.org/10.1007/s10965-020-02150-0

    Article  Google Scholar 

  27. Dara PK, Mahadevan R, Sivaraman GK, Deekonda K, Visnuvinayagam S, Rangasamy A, Mathew S, Ravishankar CN (2021) Biomodulation of poly (vinyl alcohol)/starch polymers into composite-based hybridised films: physico-chemical, structural and biocompatibility characterization. J Polym Res. https://doi.org/10.1007/s10965-021-02578-y

    Article  Google Scholar 

  28. Guo D, Li LC, Chen Q, Tu L, Wu B, Luo CJ, Lv WH, Xu ZR, Yang H, Liao ZQ, Chen YH (2021) Simultaneous improvement of interface compatibility and thermal conductivity for thermally conductive ABS/Al2O3 composites by using electron beam radiation processing. J Polym Res. https://doi.org/10.1007/s10965-021-02627-6

    Article  Google Scholar 

  29. Moon HK, Choi YS, Lee J-K, Ha C-S, Lee W-K, Gardella JA Jr (2009) Miscibility and hydrolytic behavior of poly (trimethylene carbonate) and poly (L-lactide) and their blends in monolayers at the air/water interface. Langmuir 25(8):4478–4483

    CAS  PubMed  Google Scholar 

  30. Zhu Y, Leong MF, Ong WF, Chan-Park MB, Chian KS (2007) Esophageal epithelium regeneration on fibronectin grafted poly (L-lactide-co-caprolactone) (PLLC) nanofiber scaffold. Biomaterials 28(5):861–868

    CAS  PubMed  Google Scholar 

  31. Burks CA, Bundy K, Fotuhi P, Alt E (2006) Characterization of 75: 25 poly (l-lactide-co-epsilon-caprolactone) thin films for the Endoluminal delivery of adipose-derived stem cells to abdominal aortic aneurysms. Tissue Eng 12(9):2591–2600

    CAS  PubMed  Google Scholar 

  32. Zhang Y, Qi J, Chen HC, Xiong CD (2021) Amphiphilic diblock copolymers inhibit the formation of encrustation on the surface of biodegradable ureteral stents in vitro and in vivo. Colloid Surface A 610:11

    Google Scholar 

  33. Sartoneva R, Nordback PH, Haimi S, Grijpma DW, Lehto K, Rooney N, Seppanen-Kaijansinkko R, Miettinen S, Lahdes-Vasama T (2018) Comparison of poly (l-lactide-co–caprolactone) and poly (trimethylene carbonate) membranes for urethral regeneration: an in vitro and in vivo study. Tissue Eng Part A 24(1–2):117–127

    CAS  Google Scholar 

  34. Liu XL, Liu S, Fan YK, Qi J, Wang X, Bai W, Chen DL, Xiong CD, Zhang LF (2021) Biodegradable cross-linked poly (L-lactide-co-ε-caprolactone) networks for ureteral stent formed by gamma irradiation under vacuum. J Ind Eng Chem. https://doi.org/10.1016/j.jiec.2021.08.014

    Article  Google Scholar 

  35. Sartoneva R, Haaparanta A-M, Lahdes-Vasama T, Mannerstrom B, Kellomaki M, Salomaki M, Sandor G, Seppanen R, Miettinen S, Haimi S (2012) Characterizing and optimizing poly-L-lactide-co-epsilon-caprolactone membranes for urothelial tissue engineering. J R Soc Interface 9(77):3444–3454

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu XL, Liu S, Li KQ, Feng SM, Fan YK, Peng LJ, Wang X, Chen DL, Xiong CD, Bai W, Zhang LF (2021) Preparation and degradation characteristics of biodegradable elastic poly (1,3-trimethylene carbonate) network. Polym Degrad Stabil. https://doi.org/10.1016/j.polymdegradstab.2021.109718

    Article  Google Scholar 

  37. Liu XL, Liu S, Li KQ, Fan YK, Feng SM, Peng LJ, Zhang TY, Wang X, Chen DL, Xiong CD, Bai W, Zhang LF (2021) Preparation and property evaluation of biodegradable elastomeric PTMC/PLCL networks used as ureteral stents. Colloid Surface A. https://doi.org/10.1016/j.colsurfa.2021.127550

    Article  Google Scholar 

  38. Bai W, Zhang ZP, Li Q, Chen DL, Chen HC, Zhao N, Xiong CD (2009) Miscibility, morphology and thermal properties of poly (para-dioxanone)/poly (D, L-lactide) blends. Polym Int 58(2):183–189

    CAS  Google Scholar 

  39. Bai W, Chen D, Li Q, Zhang Z, Xiong Z, Chen H, Xiong C (2009) Study on hydrolytic degradation of poly (p-dioxanone) with high molecular weight in vitro. Acta Polym Sin 1:78–83

    Google Scholar 

  40. Liu XL, Feng SM, Wang X, Qi J, Lei D, Li YD, Bai W (2020) Tuning the mechanical properties and degradation properties of polydioxanone isothermal annealing. Turk J Chem 44(5):1430–1444

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fernandez J, Etxeberria A, Sarasua JR (2012) Synthesis, structure and properties of poly (L-lactide-co-epsilon-caprolactone) statistical copolymers. J Mech Behav Biomed 9:100–112

    CAS  Google Scholar 

  42. Li X, Mignard N, Taha M, Prochazka F, Chen JD, Zhang SM, Becquart F (2019) Thermoreversible supramolecular networks from poly (trimethylene carbonate) synthesized by condensation with triuret and tetrauret. Macromolecules 52(17):6585–6599

    CAS  Google Scholar 

  43. Frechet JMJ (1994) Functional polymers and dendrimers - reactivity, molecular architecture, and interfacial energy. Science 263(5154):1710–1715

    CAS  PubMed  Google Scholar 

  44. Hiremani VD, Anandalli MH, Gasti T, Dixit S, Bayannavar PK, Masti SP, Bhajantri RF, Vootla SK, Mudigoudra BS, Chougale RB (2021) Dominant nature of 7-hydroxy 4-methyl coumarin dye on thermal, fluorescence and antimicrobial properties of PVA/OMS blend films. J Polym Res. https://doi.org/10.1007/s10965-021-02720-w

    Article  Google Scholar 

  45. Jiang HL, Shi JM, Zhang L, Xiao XY, Zhou WH (2021) Evolution in morphology and structure of poly (3-hexylthiophene) blending with liquid crystals under magnetic field treatment. J Polym Res. https://doi.org/10.1007/s10965-021-02588-w

    Article  Google Scholar 

  46. Lin TA, Lin MC, Lin JY, Lin JH, Chuang YC, Lou CW (2020) Modified polypropylene/thermoplastic polyurethane blends with maleic-anhydride grafted polypropylene: blending morphology and mechanical behaviors. J Polym Res. https://doi.org/10.1007/s10965-019-1974-3

    Article  Google Scholar 

  47. Yang J, An LJ, Dong LS, Teng FE, Feng ZL (2002) Theoretical estimation of thermodynamic properties of the system PS/PPO on the basis of modified combining rule of Sanchez-Lacombe lattice fluid model. Eur Polym J 38(10):2083–2092

    CAS  Google Scholar 

  48. Bai Y, Wang PQ, Bai W, Zhang LF, Li Q, Xiong CD (2015) Miscibility, thermal and mechanical properties of poly (para-dioxanone)/poly (lactic-co-glycolic acid) blends. J Polym Environ 23(3):367–373

    CAS  Google Scholar 

  49. Diaz-Celorio E, Franco L, Marquez Y, Rodriguez-Galan A, Puiggali J (2012) Thermal degradation studies on homopolymers and copolymers based on trimethylene carbonate and glycolide units. Thermochim Acta 528:23–31

    CAS  Google Scholar 

  50. Imre B, Pukanszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49(6):1215–1233

    CAS  Google Scholar 

  51. Bai W, Chen DL, Li Q, Chen HC, Zhang SL, Huang XC, Xiong CD (2009) In vitro hydrolytic degradation of poly (para-dioxanone) with high molecular weight. J Polym Res 16(5):471–480

    CAS  Google Scholar 

  52. Kuang HZ, Wang Y, Shi Y, Yao WC, He X, Liu XZ, Mo XM, Lu SY, Zhang P (2020) Construction and performance evaluation of Hep/silk-PLCL composite nanofiber small-caliber artificial blood vessel graft. Biomaterials 259:12

    Google Scholar 

  53. Liu XL, Liu S, Feng SM, Li KQ, Fan YK, Wang X, Xiao JP, Bai W, Chen DL, Xiong CD, Zhang LF (2021) Biodegradable cross-linked poly (1,3-trimethylene carbonate) networks formed by gamma irradiation under vacuum. Polym Adv Technol. https://doi.org/10.1002/pat.5439

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Support Program of Jiangsu Province, China (No. BE2018647). And the authors would like to thank Qian Fu from Shiyanjia Lab (www.shiyanjia.com) for various characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Zhang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, S., Feng, S. et al. Thermal, mechanical and degradation properties of flexible poly (1,3-trimethylene carbonate)/poly (L-lactide-co-ε-caprolactone) blends. J Polym Res 28, 447 (2021). https://doi.org/10.1007/s10965-021-02802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02802-9

Keywords

Navigation