Skip to main content
Log in

Developing montmorillonite/PVDF/PEO microporous membranes for removal of malachite green: adsorption, isotherms, and kinetics

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Montmorillonite clay nanoparticles (0, 10, 20, and 30 wt.% MMT) were hybridized with Poly(vinylidene fluoride)/polyethylene oxide (PVDF/PEO) polymer matrix for the removal of malachite green (MG) dye for the first time. Clay was chosen because it is a naturally occurring material, abundant, low cost, environmentally friendly, and has high surface area, good adsorption properties, and microporous layered structure. The cross section field-emission scanning electron microscope (FESEM) images proved the absence of interface between PVDF and PEO, which indicating good compatibility between two polymers. Additionally, the incorporation of MMT in the polymer matrix induced the formation of microporous structure. X-ray diffraction (XRD) and Attenuated Total Reflection Fourier Transformer Infrared (ATR-FTIR) analyses confirmed the good interaction between membrane components. The results revealed that the optimum composite membrane is more thermally stable compared to pure PVDF/PEO and acheived 95.4% removal and 33.4 mg/g adsorption capacity. The sorption data at equilibrium obeyed the Langmuir model (R2 = 0.9961) rather than Freundlich, Dubinin–Radushkevich, and Temkin isotherm models, proving a monolayer adsorption of MG. The adsorption kinetics were studied and according to R2, the pseudo second order is the best to fit the experimental results indicating that the chemisorption is the rate-limiting step for MG sorption onto MMT/PVDF/PEO membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Nekouei F, Kargarzadeh H, Nekouei S, Keshtpour F, Makhlouf ASH (2017) Efficient method for determination of methylene blue dye in water samples based on a combined dispersive solid phase and cloud point extraction using Cu (OH)2 nanoflakes: central composite design optimization. Anal Bioanal Chem 409:1079–1092

    Article  CAS  PubMed  Google Scholar 

  2. Khattab FI, Safa’a MR, Rezk MR, Abd El-Rahman MK, Marzouk HM (2015) A single novel PVC membrane for dual determination of sulphadimethoxine and malachite green in aquatic environment. Arab J Chem 8:787–792

    Article  CAS  Google Scholar 

  3. Hu L, Guang C, Liu Y, Su Z, Gong S, Yao Y, Wang Y (2020) Adsorption behavior of dyes from an aqueous solution onto composite magnetic lignin adsorbent. Chemosphere. 246:125757‏

  4. Zhou B, Tang Y, Zhao L, Guo L, Zhou J (2021) Novel Fe3O4–poly (methacryloxyethyltrimethyl ammonium chloride) adsorbent for the ultrafast and efficient removal of anionic dyes. RSC Adv 11:1172–1181

    Article  CAS  Google Scholar 

  5. Khulbe KC, Matsuura T (2018) Removal of heavy metals and pollutants by membrane adsorption techniques. Appl Water Sci 8:1–30

    Article  CAS  Google Scholar 

  6. Ali H (2020) Ternary system from mesoporous CdS–ZnS modified with polyaniline for removal of cationic and anionic dyes. Res Chem Intermed 46:571–592

    Article  CAS  Google Scholar 

  7. Chen P, Liang X, Wang J, Zhang D, Yang S, Wu W, Zhang W, Fan X, Zhang D (2017) PEO/PVDF-based gel polymer electrolyte by incorporating nano-TiO2 for electrochromic glass. J Solgel Sci Technol 81:850–858

    Article  CAS  Google Scholar 

  8. Patla SK, Ray R, Asokan K, Karmakar S (2018) Investigation of ionic conduction in PEO–PVDF based blend polymer electrolytes. J Appl Phys 123:125102‏

  9. Jacob MME, Prabaharan SRS, Radhakrishna S (1997) Effect of PEO addition on the electrolytic and thermal properties of PVDF-LiClO4 polymer electrolytes. Solid State Ion 104:267–276

    Article  CAS  Google Scholar 

  10. Sengwa RJ, Dhatarwal P, Choudhary S (2020) A comparative study of different metal oxide nanoparticles dispersed PVDF/PEO blend matrix-based advanced multifunctional nanodielectrics for flexible electronic devices. Mater. Today Commun 25:101380‏

  11. Lee L, Park SJ, Kim S (2013) Effect of nano-sized barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ion 234:19–24

    Article  CAS  Google Scholar 

  12. Elashmawi IS, Elsayed NH, Altalhi FA (2014) The changes of spectroscopic, thermal and electrical properties of PVDF/PEO containing lithium nanoparticles. J Alloy Compd 617:877–883

    Article  CAS  Google Scholar 

  13. Rodrigues R, Mierzwa JC, Vecitis CD (2019) Mixed matrix polysulfone/clay nanoparticles ultrafiltration membranes for water treatment. J Water Process Eng 31:100788

  14. Uddin F (2018) Montmorillonite: An introduction to properties and utilization. IntechOpen, London, pp 3–23

    Google Scholar 

  15. Ang MBMY, Deang ABG, Aquino RR, Basilia BA, Huang SH, Lee KR, Lai JY (2020) Assessing the performance of thin-film nanofiltration membranes with embedded montmorillonites. Membranes 10:79

    Article  CAS  PubMed Central  Google Scholar 

  16. Tamaño-Machiavello MN, Costa CM, Molina-Mateo J, Torregrosa-Cabanilles C, Meseguer-Dueñas JM, Kalkura SN, Lanceros-Méndez S, Sabater i Serra R, Ribelles JG (2015) Phase morphology and crystallinity of poly (vinylidene fluoride)/poly (ethylene oxide) piezoelectric blend membranes. Mater Today Commun 4:214–221

    Article  Google Scholar 

  17. Dhatarwal P, Sengwa RJ (2020) Tunable β-phase crystals, degree of crystallinity, and dielectric properties of three-phase PVDF/PEO/SiO2 hybrid polymer nanocomposites. Mater Res Bull 129:110901‏

  18. Liu J, Zheng L, Li Y, Free M, Yang M (2016) Adsorptive recovery of palladium (ii) from aqueous solution onto cross-linked chitosan/montmorillonite membrane. RSC Adv 6:51757–51767

    Article  CAS  Google Scholar 

  19. Janakiraman S, Surendran A, Ghosh S, Anandhan S, Venimadhav A (2016) Electroactive poly (vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency. Solid State Ion 292:130–135

    Article  CAS  Google Scholar 

  20. Wang Y, Wang J, Wang F, Li S, Xiao J (2008) PVDF based all-organic composite with high dielectric constant. Polym Bull 60:647–655

    Article  CAS  Google Scholar 

  21. Abdelrazek EM, Abdelghany AM, Badr SI, Morsi MA (2018) Structural, optical, morphological and thermal properties of PEO/PVP blend containing different concentrations of biosynthesized Au nanoparticles. J Mater Res Technol 7:419–431

    Article  CAS  Google Scholar 

  22. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VN (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Physica B Condens Matter 406:1706–1712

    Article  Google Scholar 

  23. Samudrala SP, Kandasamy S, Bhattacharya S (2018) Turning biodiesel waste glycerol into 1, 3-Propanediol: catalytic performance of sulphuric acid-activated montmorillonite supported platinum catalysts in glycerol hydrogenolysis. Sci Rep 8(1):1–12

    Article  CAS  Google Scholar 

  24. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978

    Article  CAS  Google Scholar 

  25. Zhang H, Xuan X, Wang J, Wang H (2005) Effect of poly (vinylidene fluoride) on solvation of NaSCN in PEO. Spectrochim Acta A Mol Biomol 61:347–353

    Article  Google Scholar 

  26. Arshad AN, Wahid MHM, Rusop M, Majid WHA, Subban RHY, Rozana MD (2019) Dielectric and structural properties of poly (vinylidene fluoride)(PVDF) and poly (vinylidene fluoride-trifluoroethylene)(PVDF-TrFE) filled with magnesium oxide nanofillers. J Nanomater 2019‏

  27. Bai H, Wang X, Zhou Y, Zhang L (2012) Preparation and characterization of poly (vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Prog Nat Sci 22:250–257

    Article  Google Scholar 

  28. Gondaliya N, Kanchan DK, Sharma P, Joge P (2011) Structural and conductivity studies of poly (ethylene oxide)—silver triflate polymer electrolyte system. Mater Sci Appl 2:1639–1643

    CAS  Google Scholar 

  29. Tyagi B, Chudasama CD, Jasra RV (2006) Determination of structural modification in acid activated montmorillonite clay by FT-IR spectroscopy. Spectrochim Acta A Mol Biomol 64:273–278

    Article  Google Scholar 

  30. Gomdje VH, Rahman AN, Wahabou A (2017) Synthesis of organoclay and its applications in electrochemical detection of paracetamol. Der Chem Sin 8:206–217

    CAS  Google Scholar 

  31. Hafez RS, Hakeem NA, Ward AA, Ismail AM, Abd El-kader FH (2020) Dielectric and Thermal Properties of PEO/PVDF Blend Doped with Different Concentrations of Li4Ti5O12 Nanoparticles. J Inorg Organomet Polym Mater 30:4468–4480

    Article  CAS  Google Scholar 

  32. Guilherme MR, Fajardo AR, Moia TA, Kunita MH, do Carmo Gonçalves M, Rubira AF, Tambourgi EB (2010) Porous nanocomposite hydrogel of vinyled montmorillonite-crosslinked maltodextrin-co-dimethylacrylamide as a highly stable polymer carrier for controlled release systems. Eur Polym J 46:1465–1474

    Article  CAS  Google Scholar 

  33. Buckley J, Cebe P, Cherdack D, Crawford J, Ince BS, Jenkins M, Pan J, Reveley M, Washington N, Wolchover N (2006) Nanocomposites of poly (vinylidene fluoride) with organically modified silicate. Polymer 47:2411–2422

    Article  CAS  Google Scholar 

  34. Guirguis O, Moselhey M (2012) Thermal and structural studies of poly (vinyl alcohol) and hydroxypropyl cellulose blends. Nat Sci 04:57–67

    CAS  Google Scholar 

  35. Solarajan A, Murugadoss V, Angaiah S (2017) High Performance Electrospun PVdF-HFP/MMT Nanofibrous Composite Membrane Electrolyte for Li-Ion Capacitors. Nano Hybrids Compos 14:1–15

    Article  Google Scholar 

  36. Ma FF, Zhang D, Zhang N, Huang T, Wang Y (2018) Polydopamine-assisted deposition of polypyrrole on electrospun poly (vinylidene fluoride) nanofibers for bidirectional removal of cation and anion dyes. Chem Eng J 354:432–444

    Article  CAS  Google Scholar 

  37. Anbia M, Ghaffari A (2011) Removal of malachite green from dye wastewater using mesoporous carbon adsorbent. J Iran Chem Soc 8:S67–S76

    Article  CAS  Google Scholar 

  38. Kubra KT, Salman MS, Hasan MN (2021) Enhanced toxic dye removal from wastewater using biodegradable polymeric natural adsorbent. J Mol Liq 328:115468

  39. Pareek P, Dave H, Ledwani L (2021) Microwave assisted modification of graphene oxide: Characterization and application for adsorptive removal of cationic dye. Mater Today: Proc 43:3277–3285.‏

  40. Adel M, Ahmed MA, Mohamed AA (2021) A facile and rapid removal of cationic dyes using hierarchically porous reduced graphene oxide decorated with manganese ferrite. Flat Chem 26:100233‏

  41. Muinde VM, Onyari JM, Wamalwa B, Wabomba JN (2020) Adsorption of malachite green dye from aqueous solutions using mesoporous chitosan–zinc oxide composite material. J Environ Chem Ecotoxicol 2:115–125

    Article  Google Scholar 

  42. Sabarish R, Unnikrishnan G (2018) Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications. Carbohydr Polym 199:129–140‏

  43. Alabduljabbar FA, Haider S, Alghyamah AA, Haider A, Khan R, Almasry WA, Patel R, Mujtaba IM, Ali FAA (2021) Ethanol amine functionalized electrospun nanofibers membrane for the treatment of dyes polluted wastewater. Appl Nanosci 1–14‏

  44. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  45. Khawaja H, Zahir E, Asghar MA, Asghar MA (2021) Graphene oxide decorated with cellulose and copper nanoparticle as an efficient adsorbent for the removal of malachitegreen. Int J Biol Macromol 167:23–34

    Article  CAS  PubMed  Google Scholar 

  46. Abbasi M, Sabzehmeidani MM, Ghaedi M, Jannesar R, Shokrollahi A (2021) Synthesis of grass-like structured Mn-Fe layered double hydroxides/PES composite adsorptive membrane for removal of malachite green. Appl Clay Sci 203:105946

  47. Freundlich H (1907) Über die adsorption in lösungen. Z Physik Chem 57(1):385–470

    Article  CAS  Google Scholar 

  48. Jain P, Sahoo K, Mahiya L, Ojha H, Trivedi H, Parmar AS, Kumar M (2021) Color removal from model dye effluent using PVA-GA hydrogel beads. J Environ Manage 281:111797

  49. Muhammad A, Shah AUHA, Bilal S, Rahman G (2019) Basic Blue dye adsorption from water using Polyaniline/Magnetite (Fe3O4) composites: Kinetic and thermodynamic aspects. Mater 12:1764

    Article  CAS  Google Scholar 

  50. Mahmoodi NM, Hayati B, Arami M, Bahrami H (2011) Preparation, characterization and dye adsorption properties of biocompatible composite (alginate/titania nanoparticle). Desalination 275:93–101

    Article  CAS  Google Scholar 

  51. Rauf MA, Bukallah SB, Hamour FA, Nasir AS (2008) Adsorption of dyes from aqueous solutions onto sand and their kinetic behavior. Chem Eng J 137:238–243

    Article  CAS  Google Scholar 

  52. Singh S, Perween S, Ranjan A (2021) Dramatic enhancement in adsorption of congo red dye in polymer-nanoparticle composite of polyaniline-zinc titanate. J Environ Chem Eng 9(3):105149‏

  53. Karri RR, Sahu JN, Jayakumar NS (2017) Optimal isotherm parameters for phenol adsorption from aqueous solutions onto coconut shell based activated carbon: error analysis of linear and non-linear methods. J Taiwan Inst Chem Eng 80:472–487

    Article  CAS  Google Scholar 

  54. Qin L, Yan L, Chen J, Liu T, Yu H, Du B (2016) Enhanced removal of Pb2+, Cu2+, and Cd2+ by amino-functionalized magnetite/kaolin clay. Ind Eng Chem Res 55:7344–7354

    Article  CAS  Google Scholar 

  55. Karaca S, Önal EÇ, Açışlı Ö, Khataee A (2021) Preparation of chitosan modified montmorillonite biocomposite for sonocatalysis of dyes: Parameters and degradation mechanism. Mater Chem Phys 260:124125

  56. Mihaly-Cozmuta L, Mihaly-Cozmuta A, Peter A, Nicula C, Tutu H, Silipas D, Indrea E (2014) Adsorption of heavy metal cations by Na-clinoptilolite: Equilibrium and selectivity studies. J Environ Manage 137:69–80

    Article  CAS  PubMed  Google Scholar 

  57. Paluri P, Ahmad KA, Durbha KS (2020) Importance of estimation of optimum isotherm model parameters for adsorption of methylene blue onto biomass derived activated carbons: Comparison between linear and non-linear methods. Biomass Convers. Biorefin 1–18‏

  58. Liu Y, Liu YJ (2008) Biosorption isotherms, kinetics and thermodynamics. Sep Purif Technol 61:229–242

    Article  CAS  Google Scholar 

  59. Temkin MI (1940) Kinetics of ammonia synthesis on promoted iron catalysts. Acta physiochim URSS 12:327–356

    CAS  Google Scholar 

  60. Gago D, Chagas R, Ferreira LM, Velizarov S, Coelhoso I (2020) A novel cellulose-based polymer for efficient removal of methylene blue. Membranes 10:13

    Article  CAS  PubMed Central  Google Scholar 

  61. Lagergren S (1898) Zur theorie der sogenannten adsorption geloster stoffe. Kungl Svenska Vetenskapsakad Handl 24:1–39

    Google Scholar 

  62. Ho YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76:332–340

    Article  CAS  Google Scholar 

  63. Weber WJ Jr, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–59

    Article  Google Scholar 

  64. Ghibate R, Senhaji O, Taouil R (2021) Kinetic and thermodynamic approaches on Rhodamine B adsorption onto pomegranate peel. Case Stud Therm Eng 3:100078‏

  65. Soraya Keshtiban A, Seyedahmadian SM, Habibi B, Farhadi K (2021) An electrospun zein/graphene oxide nanofibrous composite: Typical application as a new biopolymeric adsorbent in removal of methylene blue and malachite green dyes from aqueous media. Prog Color Color Coat 14:55–65

    Google Scholar 

  66. Khajavian M, Salehi E, Vatanpour V (2020) Chitosan/polyvinyl alcohol thin membrane adsorbents modified with zeolitic imidazolate framework (ZIF-8) nanostructures: Batch adsorption and optimization. Sep Purif Technol 241:116759

  67. Radoor S, Karayil J, Jayakumar A, Parameswaranpillai J, Siengchin S (2021) An efficient removal of malachite green dye from aqueous environment using ZSM-5 zeolite/polyvinyl alcohol/carboxymethyl cellulose/sodium alginate bio composite. J Polym Environ 29:2126–2139

    Article  CAS  Google Scholar 

  68. Swan NB, Ahmad Zaini MA (2019) Removal of malachite green and Congo red dyes from water by polyacrylonitrile carbon fibre sorbents. Acta Checmica Malaysia 3:29–34

    Article  Google Scholar 

  69. Yao BJ, Jiang WL, Dong Y, Liu ZX, Dong YB (2016) Post-Synthetic Polymerization of UiO-66-NH2 Nanoparticles and Polyurethane Oligomer toward Stand-Alone Membranes for Dye Removal and Separation. Chem Eur J 22:10565–10571

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Dr. Ali thanks Prof. Zahra Saleh, Central Laboratories Network and The Centers of Excellence, NRC, for helping with UV-vis absorption measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heba Ali.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, H., Ismail, A.M. Developing montmorillonite/PVDF/PEO microporous membranes for removal of malachite green: adsorption, isotherms, and kinetics. J Polym Res 28, 429 (2021). https://doi.org/10.1007/s10965-021-02789-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02789-3

Keywords

Navigation