Skip to main content
Log in

Enhanced mechanical, crystallisation and thermal properties of graphene flake-filled polyurethane nanocomposites: the impact of thermal treatment on the resulting microphase-separated structure

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The present work investigates the combined effect of the addition of graphite nanoplatelets (xGNPs) to polyurethane copolymer (PUC) and thermal treatment was employed. The PUC reinforced by xGNP were synthesized by in-situ polymerisation, which leads to an effective performance of the PUC/xGNP system. Meanwhile, X-ray diffraction (XRD) and Raman spectroscopy tests displayed the inter-spacing planar quality of xGNP nanofillers. The thermal stability of PUC was seen to increase with addition of xGNP. Additionally, the dynamic storage modulus (Eʹ) showed better performance after thermal treatment than in the untreated samples. However, a relationship between the microphase-separated morphology of PUC induced by thermal treatment and the addition of xGNP has been observed. Consequently, the crystallinity percentage increased after thermal treatment @ 80 ˚C for 4 days, presuming a re-ordering of amorphous hard segments during the heating in a packed microphase conformation. On the other hand, better dispersion and interaction of xGNP can play a crucial role in enhancing the thermal and mechanical properties, and thus a significant reinforcement for PUC. The tensile properties such as modulus and tensile strength showed significant enhancement with xGNP incorporation, while the elongation steeply dropped. On the contrary, a deterioration in modulus and tensile strength resulted from thermal treatment, likely due to the restacking of xGNP during segmental movement and thus increasing the amorphous phase rather than the crystalline phase. A modified Halpin–Tsai model was utilised to predict the mismatch between the empirical and theoretical results. Consequently, the findings displayed the divergence of the nanocomposite modulus of PUC with greater amounts of xGNP nanofillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Woods G (1990) The ICI Polyurethanes Book. 2nd eddition edn. John Wiley and Sons, New York. https://doi.org/10.1002/actp.1991.010420820

  2. Khudyakov IV, RDZaNJT (2009) Polyurethane Nanocomposites. Des Monomers Polym 12:279–290. https://doi.org/10.1163/156855509X448253

    Article  CAS  Google Scholar 

  3. Marcelo Antunes ÁC, Realinho V, Arencón D, Velasco JI (2014) Compression properties and cellular structure of polyurethane composite foams combining nanoclay and different reinforcements. International J Compos Mater 4:27–34. https://doi.org/10.5923/j.cmaterials.201401.04

    Article  Google Scholar 

  4. Ahmadi Y, Ahmad S (2019) Recent progress in the synthesis and property enhancement of waterborne polyurethane nanocomposites: promising and versatile macromolecules for advanced applications. Polym Rev 60(2):1–41. https://doi.org/10.1080/15583724.2019.1673403

    Article  CAS  Google Scholar 

  5. Albozahid M, Naji HZ, Alobad ZK, Saiani A (2021) Effect of OMMT reinforcement on morphology and rheology properties of polyurethane copolymer nanocomposites. J Elast Plast :009524432110061. https://doi.org/10.1177/00952443211006160

  6. Albozahid M, Naji HZ, Alobad ZK, Saiani A (2021) Effect of OMMT reinforcement on morphology and rheology properties of polyurethane copolymer nanocomposites. J Elast Plast :009524432110061. https://doi.org/10.1021/ma034604+

  7. Painter JMaP (2007) A Comparison of Hydrogen Bonding and Order in a Polyurethane and Poly(urethane-urea) and Their Blends with Poly(ethylene glycol). Macromolecules (40):1546-1554. https://doi.org/10.1021/ma0626362

  8. Tian D, Wang F, Yang Z, Niu X, Wu Q, Sun P (2019) High-performance polyurethane nanocomposites based on UPy-modified cellulose nanocrystals. Carbohyd Polym 219:191–200. https://doi.org/10.1016/j.carbpol.2019.05.029

    Article  CAS  Google Scholar 

  9. Xanthos M (2010) Functional Fillers for Plastics. Second, updated and enlarged edition edn. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim,

  10. Hussein MA, Abu-Zied Bahaa M, Asiri AM (2018) Fabrication of EPYR/GNP/MWCNT carbon-based composite materials for promoted epoxy coating performance. RSC Adv 8(42):23555–23566. https://doi.org/10.1039/c8ra03109f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Byung Min Yoo HJS, Yoon HW, Park HB (2013) Graphene and graphene oxide and their uses in barrier polymers. J Appl Polym Sci. https://doi.org/10.1002/app.39628

    Article  Google Scholar 

  12. Li B, Zhong W-H (2011) Review on polymer/graphite nanoplatelet nanocomposites. J Mater Sci 46(17):5595–5614. https://doi.org/10.1007/s10853-011-5572-y

    Article  CAS  Google Scholar 

  13. Papageorgiou DG, Kinloch IA, Young RJ (2015) Graphene/elastomer nanocomposites. Carbon 95:460–484. https://doi.org/10.1016/j.carbon.2015.08.055

    Article  CAS  Google Scholar 

  14. Young RJ, Kinloch IA (2012) Graphene and graphene-based nanocomposites. 1:145-179. https://doi.org/10.1039/9781849734844-00145

  15. Albozahid MAMa (2018) Design of novel high modulus, tpus for nanocomposite applications University of Manchester the UK

  16. Wang X, Hu Y, Song L, Yang H, Xing W, Lu H (2011) In situ polymerization of graphene nanosheets and polyurethane with enhanced mechanical and thermal properties. J Mater Chem 21(12):4222. https://doi.org/10.1039/c0jm03710a

    Article  CAS  Google Scholar 

  17. Naz A, Kausar A, Siddiq M, Choudhary MA (2015) Comparative review on structure, properties, fabrication techniques, and relevance of polymer nanocomposites reinforced with carbon nanotube and graphite fillers. Polym-Plast Technol Eng 55(2):171–198. https://doi.org/10.1080/03602559.2015.1055504

    Article  CAS  Google Scholar 

  18. Du J, Cheng H-M (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213(10–11):1060–1077. https://doi.org/10.1002/macp.201200029

    Article  CAS  Google Scholar 

  19. Hassan AE-SM, EiD AI, El-Sheikh M, Ali WY (2017) Effect of graphene nanoplatelets and paraffin oil addition on the mechanical and tribological properties of low-density polyethylene nanocomposites. Arab J Sci Eng 43(3):1435–1443. https://doi.org/10.1007/s13369-017-2965-5

    Article  CAS  Google Scholar 

  20. Yao KJMS, Hourston DJ, Luo DZ (2002) Polymer/ layered clay nanocomposites: 2 polyurethane nanocomposites. Polymer 43:1017–1020. https://doi.org/10.1016/S0032-3861(01)00650-4

    Article  CAS  Google Scholar 

  21. Liu H, Huang W, Yang X, Dai K, Zheng G, Liu C, Shen C, Yan X, Guo J, Guo Z (2016) Organic vapor sensing behaviors of conductive thermoplastic polyurethane–graphene nanocomposites. J Mater Chem C. 4(20):4459–4469. https://doi.org/10.1039/c6tc00987e

    Article  CAS  Google Scholar 

  22. Gurunathan T, Rao CRK, Narayan R, Raju KVSN (2012) Polyurethane conductive blends and composites: synthesis and applications perspective. J Mater Sci 48(1):67–80. https://doi.org/10.1007/s10853-012-6658-x

    Article  CAS  Google Scholar 

  23. Panahi-Sarmad M, Abrisham M, Noroozi M, Amirkiai A, Dehghan P, Goodarzi V, Zahiri B (2019) Deep focusing on the role of microstructures in shape memory properties of polymer composites: A critical review. Eur Polymer J 117:280–303. https://doi.org/10.1016/j.eurpolymj.2019.05.013

    Article  CAS  Google Scholar 

  24. Bai JJ, Hu GS, Zhang JT, Liu BX, Cui JJ, Hou XR, Yu F, Li ZZ (2019) Preparation and rheology of isocyanate functionalized graphene oxide/thermoplastic polyurethane elastomer nanocomposites. J Macromole Sci Part B 58(3):425–441. https://doi.org/10.1080/00222348.2019.1565102

    Article  CAS  Google Scholar 

  25. Solouki Bonab V, Maxian O, Manas-Zloczower I (2019) Carbon nanofiller networks- a comparative study of networks formed by branched versus linear carbon nanotubes in thermoplastic polyurethane. Polymer 175:227–234. https://doi.org/10.1016/j.polymer.2019.05.031

    Article  CAS  Google Scholar 

  26. Yan Huan JL, Jie Wang, Fan Wu, Xiaoniu Yang (2017) Physical properties and morphology of crosslinked polyurethane synthesized from para-phenylene diisocyanate and polyether polyol. J Appl Polym Sci 134 (37). https://doi.org/10.1002/app.45241

  27. Zulkifli NNb, Badri KbH, Amin KAM (2016) Palm kernel oil-based polyester polyurethane composites incorporated with multi-walled carbon nanotubes for biomedical application. Bioresources and Bioprocessing 3 (1). https://doi.org/10.1186/s40643-016-0102-z

  28. Anandhan S, Lee HS (2012) Influence of organically modified clay mineral on domain structure and properties of segmented thermoplastic polyurethane elastomer. J Elastomers Plast 46(3):217–232. https://doi.org/10.1177/0095244312465300

    Article  CAS  Google Scholar 

  29. Dongxu Li GF, Xia H, Spencer PE, Coates PD (2015) Micro-contact reconstruction of adjacent carbon nanotubes in polymer matrix through annealing-induced relaxation of interfacial residual stress and strain. J Appl Polym Sci. https://doi.org/10.1002/app.42416

    Article  Google Scholar 

  30. Yousefi N, Gudarzi MM, Zheng Q, Lin X, Shen X, Jia J, Sharif F, Kim J-K (2013) Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: Mechanical properties and moisture permeability. Compos A Appl Sci Manuf 49:42–50. https://doi.org/10.1016/j.compositesa.2013.02.005

    Article  CAS  Google Scholar 

  31. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388. https://doi.org/10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  32. Andrea Caradonna GC, Giorcelli M, Frache A, Badini C (2017) Thermal behavior of thermoplastic polymer nanocomposites containing graphene nanoplatelets. J Appl Polym Sci. https://doi.org/10.1002/app.44814

    Article  Google Scholar 

  33. Ajorloo MF, Ohshima M, Taki M, Kentaro (2019) How are the thermal properties of polypropylene/graphene nanoplatelet composites affected by polymer chain configuration and size of nanofiller. Mater Des 181:108068. https://doi.org/10.1016/j.matdes.2019.108068

    Article  CAS  Google Scholar 

  34. Karolina Gaska RK, Xiangdong Xu, Gubanski S, Müller C, Pandit S, Mokkapati VRSS, Mijakovic I, Rybak A, Siwek A, Svensson M (2019) Highly structured graphene polyethylene nanocomposites. AIP Conf Proc 2065:030061. https://doi.org/10.1063/1.5088319

    Article  CAS  Google Scholar 

  35. Xu W, Jambhulkar S, Verma R, Franklin R, Ravichandran D, Song K (2019) In situ alignment of graphene nanoplatelets in poly(vinyl alcohol) nanocomposite fibers with controlled stepwise interfacial exfoliation. Nanoscale Advances 1(7):2510–2517. https://doi.org/10.1039/c9na00191c

    Article  CAS  Google Scholar 

  36. Gedler GA, Borca-Tasciuc M, Velasco T, Ozisik JI, R. (2016) Effects of graphene concentration, relative density and cellular morphology on the thermal conductivity of polycarbonate–graphene nanocomposite foams. Eur Polymer J 75:190–199. https://doi.org/10.1016/j.eurpolymj.2015.12.018

    Article  CAS  Google Scholar 

  37. Huang A, Wang H, Ellingham T, Peng X, Turng L-S (2019) An improved technique for dispersion of natural graphite particles in thermoplastic polyurethane by sub-critical gas-assisted processing. Compos Sci Technol 182:107783. https://doi.org/10.1016/j.compscitech.2019.107783

    Article  CAS  Google Scholar 

  38. Gupta RK, Hashmi SAR, Verma S, Naik A, Nair P (2020) Recovery Stress and Storage Modulus of Microwave-Induced Graphene-Reinforced Thermoresponsive Shape Memory Polyurethane Nanocomposites. J Mater Eng Perform. https://doi.org/10.1007/s11665-020-04568-5

    Article  Google Scholar 

  39. Albozahid M, Habeeb SA, Ismael Alhilo NA, Saiani A (2020) The impact of graphene nanofiller loading on the morphology and rheology behaviour of highly rigid polyurethane copolymer. Mater Res Express 7(12):125304. https://doi.org/10.1088/2053-1591/aba5ce

    Article  CAS  Google Scholar 

  40. Bera M, Maji PK (2017) Effect of structural disparity of graphene-based materials on thermo-mechanical and surface properties of thermoplastic polyurethane nanocomposites. Polymer 119:118–133. https://doi.org/10.1016/j.polymer.2017.05.019

    Article  CAS  Google Scholar 

  41. Pashupati Pokharel HB, Jung-Gyu Lim, Kyoung Yong Lee, Sunwoong Choi (2015) Effects of titanate treatment on morphology and mechanical properties of graphene nanoplatelets/high density polyethylene nanocomposites. J Appl Polym Sci 132 (23):42073 (42071 of 42011). https://doi.org/10.1002/app.42073

  42. Lin J, Zhang H, Tang M, Tu W, Zhang X (2014) Improved Thermal Property of a Multilayered Graphite Nanoplatelets Filled Silicone Resin Composite. J Mater Eng Perform 24(2):920–929. https://doi.org/10.1007/s11665-014-1356-2

    Article  CAS  Google Scholar 

  43. Lin J, Zhang P, Zheng C, Wu X, Mao T, Zhu M, Wang H, Feng D, Qian S, Cai X (2014) Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties. Appl Surf Sci 316:114–123. https://doi.org/10.1016/j.apsusc.2014.07.058

    Article  CAS  Google Scholar 

  44. Mahapatra SS, Yadav SK, Yoo HJ, Ramasamy MS, Cho JW (2014) Tailored and strong electro-responsive shape memory actuation in carbon nanotube-reinforced hyperbranched polyurethane composites. Sens Actuators, B Chem 193:384–390. https://doi.org/10.1016/j.snb.2013.12.006

    Article  CAS  Google Scholar 

  45. Valentini L, Cardinali M, Kenny J (2014) Hot press transferring of graphene nanoplatelets on polyurethane block copolymers film for electroactive shape memory devices. J Polym Sci, Part B: Polym Phys 52(16):1100–1106. https://doi.org/10.1002/polb.23539

    Article  CAS  Google Scholar 

  46. Bian J, Lin HL, He FX, Wei XW, Chang IT, Sancaktar E (2013) Fabrication of microwave exfoliated graphite oxide reinforced thermoplastic polyurethane nanocomposites: Effects of filler on morphology, mechanical, thermal and conductive properties. Compos A Appl Sci Manuf 47:72–82. https://doi.org/10.1016/j.compositesa.2012.12.009

    Article  CAS  Google Scholar 

  47. Lei H, Liu Z, He C, Zhang S-C, Liu Y-Q, Hua C-J, Li X-M, Li F, Chen C-M, Cai R (2016) Graphene enhanced low-density polyethylene by pretreatment and melt compounding. RSC Adv 6(103):101492–101500. https://doi.org/10.1039/c6ra15702e

    Article  CAS  Google Scholar 

  48. Dingchun Zhu YR, Liao G, Jiang S, Liu F, Guo J, Gaojie Xu (2017) Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling. J Appl Polym Sci. https://doi.org/10.1002/app.45332

    Article  Google Scholar 

  49. Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int 58(4):412–417. https://doi.org/10.1002/pi.2549

    Article  CAS  Google Scholar 

  50. Han PJYaCD (2000) Effect of Thermal History on the Rheological Behavior of Thermoplastic Polyurethanes. Macromolecules (33):2171-2183. https://doi.org/10.1021/ma991741r

  51. Bourque AJ, Locker CR, Tsou AH, Vadlamudi M (2016) Nucleation and mechanical enhancements in polyethylene-graphene nanoplate composites. Polymer 99:263–272. https://doi.org/10.1016/j.polymer.2016.07.025

    Article  CAS  Google Scholar 

  52. Pielichowska K, Bieda J, Szatkowski P (2016) Polyurethane/graphite nano-platelet composites for thermal energy storage. Renewa Energy 91:456–465. https://doi.org/10.1016/j.renene.2016.01.076

    Article  CAS  Google Scholar 

  53. Fahimeh Askari MB, Mohammad Barmar, Parvin Shokrollahi (2016) Polyurethane/amino-grafted multiwalled carbon nanotube nanocomposites: Microstructure, thermal, mechanical, and rheological properties. J Appl Polym Sci 134 (4):44411 (44411 of 44419). https://doi.org/10.1002/app.44411

  54. Boubakri A, Haddar N, Elleuch K, Bienvenu Y (2011) Influence of thermal aging on tensile and creep behavior of thermoplastic polyurethane. Comptes Rendus Mécanique 339(10):666–673. https://doi.org/10.1016/j.crme.2011.07.003

    Article  CAS  Google Scholar 

  55. Libanori R, Münch FHL, Montenegro DM, Studart AR (2012) Hierarchical reinforcement of polyurethane-based composites with inorganic micro- and nanoplatelets. Compos Sci Technol 72(3):435–445. https://doi.org/10.1016/j.compscitech.2011.12.005

    Article  CAS  Google Scholar 

  56. Yadav SK, Cho JW (2013) Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Appl Surf Sci 266:360–367. https://doi.org/10.1016/j.apsusc.2012.12.028

    Article  CAS  Google Scholar 

  57. Pokharel P, Choi S, Lee DS (2015) The effect of hard segment length on the thermal and mechanical properties of polyurethane/graphene oxide nanocomposites. Compos A Appl Sci Manuf 69:168–177. https://doi.org/10.1016/j.compositesa.2014.11.010

    Article  CAS  Google Scholar 

  58. Lin S, Anwer MAS, Zhou Y, Sinha A, Carson L, Naguib HE (2018) Evaluation of the thermal, mechanical and dynamic mechanical characteristics of modified graphite nanoplatelets and graphene oxide high-density polyethylene composites. Compos B Eng 132:61–68. https://doi.org/10.1016/j.compositesb.2017.08.010

    Article  CAS  Google Scholar 

  59. Liang JZ, Du Q, Tsui GCP, Tang CY (2016) Tensile properties of graphene nano-platelets reinforced polypropylene composites. Compos B Eng 95:166–171. https://doi.org/10.1016/j.compositesb.2016.04.011

    Article  CAS  Google Scholar 

  60. Taheri S, Sadeghi GMM (2015) Microstructure–property relationships of organo-montmorillonite/polyurethane nanocomposites: Influence of hard segment content. Appl Clay Sci 114:430–439. https://doi.org/10.1016/j.clay.2015.06.036

    Article  CAS  Google Scholar 

  61. Razeghi M, Pircheraghi G (2018) TPU/graphene nanocomposites: Effect of graphene functionality on the morphology of separated hard domains in thermoplastic polyurethane. Polymer 148:169–180. https://doi.org/10.1016/j.polymer.2018.06.026

    Article  CAS  Google Scholar 

  62. Pedrazzoli D, Manas-Zloczower I (2016) Understanding phase separation and morphology in thermoplastic polyurethanes nanocomposites. Polymer 90:256–263. https://doi.org/10.1016/j.polymer.2016.03.022

    Article  CAS  Google Scholar 

  63. Kishor Kumar Sadasivuni DP, Kumar B, Strankowski M, Ruth Cardinaels PM, Thomas S, Grohens Y (2014) Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos Sci Technol 104:18–25. https://doi.org/10.1016/j.compscitech.2014.08.025

    Article  CAS  Google Scholar 

  64. Abbasi A, Mir Mohamad Sadeghi G, Ghasemi I, Shahrousvand M (2018) Shape memory performance of green in situ polymerized nanocomposites based on polyurethane/graphene nanoplatelets: Synthesis, properties, and cell behavior. Polymer Composites 39 (11):4020–4033. https://doi.org/10.1002/pc.24456

  65. Hosseini-Sianaki T, Nazockdast H, Salehnia B, Nazockdast E (2015) Microphase separation and hard domain assembly in thermoplastic polyurethane/multiwalled carbon nanotube nanocomposites. Polym Eng Sci 55(9):2163–2173. https://doi.org/10.1002/pen.24101

    Article  CAS  Google Scholar 

  66. Chen Z, Lu H (2012) Constructing sacrificial bonds and hidden lengths for ductile graphene/polyurethane elastomers with improved strength and toughness. J Mater Chem 22(25):12479. https://doi.org/10.1039/c2jm30517h

    Article  CAS  Google Scholar 

  67. Gaikwad SD, Dravid SV, Sonawane BU, Abraham M, Goyal RK (2019) Dynamic mechanical and creep properties of poly(ether ketone)-graphite nanoplatelet (GNP) nanocomposites. Polym-Plast Technol Mater 58(15):1691–1701. https://doi.org/10.1080/25740881.2018.1563141

    Article  CAS  Google Scholar 

  68. Zhang Y, Zhang Y, Liu Y, Wang X, Yang B (2016) A novel surface modification of carbon fiber for high-performance thermoplastic polyurethane composites. Appl Surf Sci 382:144–154. https://doi.org/10.1016/j.apsusc.2016.04.118

    Article  CAS  Google Scholar 

  69. Sahebi Jouibari I, Kamkar M, Nazokdast H (2017) Nanoparticle effects of thermoplastic polyurethane on kinetics of microphase separation, with or without preshear. Polym Compos 39(12):4551–4559. https://doi.org/10.1002/pc.24563

    Article  CAS  Google Scholar 

  70. Nautiyal P, Boesl B, Agarwal A (2017) Harnessing Three Dimensional Anatomy of Graphene Foam to Induce Superior Damping in Hierarchical Polyimide Nanostructures. Small 13 (10). https://doi.org/10.1002/smll.201603473

  71. Wang Z, Li S, Wu Z (2015) The fabrication and properties of a graphite nanosheet/polystyrene composite based on graphite nanosheets treated with supercritical water. Compos Sci Technol 112:50–57. https://doi.org/10.1016/j.compscitech.2015.03.010

    Article  CAS  Google Scholar 

  72. Li X, Deng H, Li Z, Xiu H, Qi X, Zhang Q, Wang K, Chen F, Fu Q (2015) Graphene/thermoplastic polyurethane nanocomposites: Surface modification of graphene through oxidation, polyvinyl pyrrolidone coating and reduction. Compos A Appl Sci Manuf 68:264–275. https://doi.org/10.1016/j.compositesa.2014.10.016

    Article  CAS  Google Scholar 

  73. Sahoo NG, Jung YC, Yoo HJ, Cho JW (2006) Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem Phys 207(19):1773–1780. https://doi.org/10.1002/macp.200600266

    Article  CAS  Google Scholar 

  74. Wang Y, Li T, Wang X, Ma P, Bai H, Dong W, Xie Y, Chen M (2016) Superior performance of polyurethane based on natural melanin nanoparticles. Biomacromol 17(11):3782–3789. https://doi.org/10.1021/acs.biomac.6b01298

    Article  CAS  Google Scholar 

  75. Kalaitzidou K, Fukushima H, Miyagawa H, Drzal LT (2007) Flexural and tensile moduli of polypropylene nanocomposites and comparison of experimental data to Halpin-Tsai and Tandon-Weng models. Polym Eng Sci 47(11):1796–1803. https://doi.org/10.1002/pen.20879

    Article  CAS  Google Scholar 

  76. Li B, Olson E, Perugini A, Zhong W-H (2011) Simultaneous enhancements in damping and static dissipation capability of polyetherimide composites with organosilane surface modified graphene nanoplatelets. Polymer 52(24):5606–5614. https://doi.org/10.1016/j.polymer.2011.09.048

    Article  CAS  Google Scholar 

  77. Ramin Shamsi MM, Mojtaba Koosha (2016) Synthesis of CNT-polyurethane nanocomposites using ester-based polyols with different molecular structure: Mechanical, thermal, and electrical properties. J Appl Polym Sci 134 (10):44567 (44561 of 44513). https://doi.org/10.1002/app.44567

  78. Kardos JCHaJL (1976) The Halpin-Tsai Equations: A Review. Polym Eng Sci 16 (5)

  79. Cai C, Liu L, Fu Y (2019) Processable conductive and mechanically reinforced polylactide/graphene bionanocomposites through interfacial compatibilizer. Polym Compos 40(1):389–400. https://doi.org/10.1002/pc.24663

    Article  CAS  Google Scholar 

  80. http://www.sigmaalrdrich.com/

  81. Zhong J, Isayev AI, Zhang X (2016) Ultrasonic twin screw compounding of polypropylene with carbon nanotubes, graphene nanoplates and carbon black. Eur Polymer J 80:16–39. https://doi.org/10.1016/j.eurpolymj.2016.04.028

    Article  CAS  Google Scholar 

  82. Shokrieh MM, Esmkhani M, Shahverdi HR, Vahedi F (2013) Effect of Graphene Nanosheets (GNS) and Graphite Nanoplatelets (GNP) on the Mechanical Properties of Epoxy Nanocomposites. Sci Adv Mater 5(3):260–266. https://doi.org/10.1166/sam.2013.1453

    Article  CAS  Google Scholar 

  83. Lijuan Zhao XS, Liu Qi, Zhao J, Xing W (2015) Natural Rubber/Graphene Oxide Nanocomposites Prepared by Latex Mixing. Journal of Macromolecular Science, Part B 54:581–592

    Article  Google Scholar 

  84. Ahmadi-Moghadam B, Taheri F (2014) Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites. J Mater Sci 49(18):6180–6190. https://doi.org/10.1007/s10853-014-8332-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Materials Department at University of Kufa, Faculty of Engineering, for their unlimited support to achieve this research.

Funding

This research received no specific grant from any funding agency or company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muayad Albozahid.

Ethics declarations

Conflict of Interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albozahid, M., Naji, H.Z., Alobad, Z.K. et al. Enhanced mechanical, crystallisation and thermal properties of graphene flake-filled polyurethane nanocomposites: the impact of thermal treatment on the resulting microphase-separated structure. J Polym Res 28, 302 (2021). https://doi.org/10.1007/s10965-021-02660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02660-5

Keywords

Navigation