Skip to main content
Log in

Pectin-based self-healing hydrogel with NaHCO3 degradability for drug loading and release

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Self-healing hydrogels which have magical self-healing properties have attracted much attention in recent years. Here, we prepared a self-healing hydrogel with biocompatibility and NaHCO3 degradability. The hydrogel is constructed from cross-linking of poly(N,N-dimethyl acrylamide-stat-4-formylphenyl acrylate) P(DMA-stat-FPA) by pectin achlydrazide (pectin-AH). This hydrogel has base labile phenolic bonds connection and acylhydrazone bonds, which made the hydrogel degradable in extremely mild base of NaHCO3 solution and showed self-healing property. At the same time, the pectin endowed the hydrogels with good biocompatibility and biodegradabilty. In addition, hydrogel has micro-porous structure and showed controlled drug release behavior. These excellent properties made this hydrogel very useful in biomedical fields such as tissue engineering, drug carriers and biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yang C, Suo Z (2018) Hydrogel ionotronics.  Nat Rev Mater 3(6): 125–142

  2. Unutulmazsoy Y, Merkle R, Rastegar I, Maier J, Mannhart J (2017) Research Update: Ionotronics for long-term data storage devices. APL Mater 5(4):042302

    Article  Google Scholar 

  3. Fong DD, Ramanathan S (2017) Ionotronics. APL Mater 5(4):042201

    Article  Google Scholar 

  4. Yang CH, Chen B, Zhou J, Chen YM, Suo Z (2016) Electroluminescence of Giant Stretchability. Adv Mater 28(22):4480–4484

    Article  CAS  PubMed  Google Scholar 

  5. Yuk H, Lu BY, Zhao XH (2019) Hydrogel bioelectronics. Chem Soc Rev 48(6):1642–1667

    Article  CAS  PubMed  Google Scholar 

  6. Zhou Y, Wan C, Yang Y, Yang H, Wang S, Dai Z, Ji K, Jiang H, Chen X, Long Y (2019) Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics. Adv Funct Mater 29(1):201806220

    Article  Google Scholar 

  7. Joshi N, Yan J, Levy S et al (2018) Towards an arthritis flare-responsive drug delivery system. Nat Commun 9(1):1275

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chaikasem S, Abeynayaka A, Visvanathan C (2014) Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor. Bioresource Technol 168:100–105

    Article  CAS  Google Scholar 

  9. Sakoda M, Kaneko M, Ohta S, Qi P, Ichimura S, Yatomi Y, Ito T (2018) Injectable Hemostat Composed of a Polyphosphate-Conjugated Hyaluronan Hydrogel. Biomacromol 19(8):3280–3290

    Article  Google Scholar 

  10. V. S, S. A, M. Annapoorna, J. R, I. Subramania, V.N. Shantikumar, J. R, (2018) Injectable deferoxamine nanoparticles loaded chitosan-hyaluronic acid coacervate hydrogel for therapeutic angiogenesis, Colloids Surf. B Biointerfaces 161:129–138

    Article  Google Scholar 

  11. Larraneta E, Henry M, Irwin NJ, Trotter J, Perminova A, Donnelly RF (2018) Synthesis and characterization of hyaluronic acid hydrogels crosslinked using a solvent-free process for potential biomedical applications. Carbohyd Polym 181:1194–1205

    Article  CAS  Google Scholar 

  12. Qu J, Zhao X, Liang Y, Zhang T, Ma PX, Guo B (2018) Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 183:185–199

    Article  CAS  PubMed  Google Scholar 

  13. Hamedi H, Moradi S, Hudson SM, Tonelli AE (2018) Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohyd Polym 199:445–460

    Article  CAS  Google Scholar 

  14. Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P (2017) Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechn Adv 35(5):530–544

    Article  CAS  Google Scholar 

  15. Li J, Ma J, Chen S, He J, Huang Y (2018) Characterization of calcium alginate/deacetylated konjac glucomannan blend films prepared by Ca2+ crosslinking and deacetylation. Food Hydrocolloid 82:363–369

    Article  CAS  Google Scholar 

  16. Hu ZH, Omer AM, Ouyang XK, Yu D (2018) Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb (II) from aqueous solution. Int J Biol Macromolecules 108:149–157

    Article  CAS  Google Scholar 

  17. Pawar SN, Edgar KJ (2012) Alginate derivatization: A review of chemistry, properties and applications. Biomaterials 33(11):3279–3305

    Article  CAS  PubMed  Google Scholar 

  18. Ma L, Chen S, Wang D, Yang Q, Mo F, Liang G, Li N, Zhang H, Zapien JA, Zhi C (2019) Super-Stretchable Zinc Air Batteries Based on an Alkaline-Tolerant Dual-Network Hydrogel Electrolyte. Adv Energy Mater 9(12):1803046

    Article  Google Scholar 

  19. Melo BC, Paulino FA, Cardoso VA, Pereira AGB, Fajardo AR, Rodrigues FHA (2018) Cellulose nanowhiskers improve the methylene blue adsorption capacity of chitosan-g-poly (acrylic acid) hydrogel. Carbohyd Polym 181:358–367

    Article  CAS  Google Scholar 

  20. Ali A, Ahmed S (2018) A review on chitosan and its nanocomposites in drug delivery. Int J Biological Macromolecules 109:273–286

    Article  CAS  Google Scholar 

  21. Karmakar M, Mondal H, Mahapatra M, Chattopadhyay PK, Chatterjee S, Singha NR (2019) Pectin-grafted terpolymer superabsorbent via N-H activated strategic protrusion of monomer for removals of Cd (II), Hg (II), and Pb (II). Carbohyd Polym 206:778–791

    Article  CAS  Google Scholar 

  22. Wang X, Chen Q, Lu X (2014) Pectin extracted from apple pomace and citrus peel by subcritical water. Food Hydrocolloid 38:129–137

    Article  CAS  Google Scholar 

  23. Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Re 65(9):1148–1171

    Article  CAS  Google Scholar 

  24. McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural Design Principles for Delivery of Bioactive Components in Nutraceuticals and Functional Foods. Crit Rev Food Sci Nutrition 49(6):577–606

    Article  CAS  Google Scholar 

  25. Vazquez-Gonzalez M, Willner I (2020) Stimuli-responsive Biomolecule-based Hydrogels and their Applications. Angew Chem Int Edit 59(36):15342–15377

    Article  CAS  Google Scholar 

  26. Gan D, Xing W, Jiang L, Fang J, Zhao C, Ren F, Fang L, Wang K, Lu X (2019) Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry. Nat Commun 10(1):1487

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fu J, M. in het Panhuis, (2019) Hydrogel properties and applications. J Mater Chem B 7(10):1523–1525

    Article  CAS  PubMed  Google Scholar 

  28. Xiao X, Xie T, Cheng YT (2010) Self-healable graphene polymer composites. J Mater Chem 20(17):3508–3514

    Article  CAS  Google Scholar 

  29. Karimi AR, Khodadadi A (2016) Mechanically Robust 3D Nanostructure Chitosan-Based Hydrogels with Autonomic Self-Healing Properties. ACS Appl Mater Interf 8(40):27254–27263

    Article  CAS  Google Scholar 

  30. Han L, Yan L, Wang K, Fang L, Zhang H, Tang Y, Ding Y, Weng LT, Xu J, Weng J, Liu Y, Ren F, Lu X (2017) Tough, self-healable and tissue-adhesive hydrogel with tunable multifunctionality. NPG Asia Mater 9(4):e372

    Article  CAS  Google Scholar 

  31. Chang R, Wang X, Li X, An H, Qin J (2016) Self-Activated Healable Hydrogels with Reversible Temperature Responsiveness. ACS Appl Mater Interf 8(38):25544–25551

    Article  CAS  Google Scholar 

  32. Deng G, Tang C, Li F, Jiang H, Chen Y (2010) Covalent Cross-Linked Polymer Gels with Reversible Sol−Gel Transition and Self-Healing Properties. Macromolecules 43(3):1191–1194

    Article  CAS  Google Scholar 

  33. An H, Zhu L, Shen J, Li W, Wang Y, Qin J (2020) Self-healing PEG-poly (aspartic acid) hydrogel with rapid shape recovery and drug release. Colloids Surfaces B: Biointerfaces 185(1):110601

    Article  CAS  PubMed  Google Scholar 

  34. Hoffman MD, Benoit DSW (2015) Agonism of Wnt-β-catenin signalling promotes mesenchymal stem cell (MSC) expansion. J Tissue Eng Regen Medicine 9(11):E13–E26

    Article  CAS  Google Scholar 

  35. He X, Yang X, Jabbari E (2012) Combined Effect of Osteopontin and BMP-2 Derived Peptides Grafted to an Adhesive Hydrogel on Osteogenic and Vasculogenic Differentiation of Marrow Stromal Cells. Langmuir 28(12):5387–5397

    Article  CAS  PubMed  Google Scholar 

  36. Hu X, Li H, Luo S, Liu T, Jiang Y, Liu S (2013) Thiol and pH dual-responsive dynamic covalent shell cross-linked micelles for triggered release of chemotherapeutic drugs. Polym Chem 4(3):695–706

    Article  CAS  Google Scholar 

  37. Jivan F, Alge DL (2019) Bio-Orthogonal, Site-Selective Conjugation of Recombinant Proteins to Microporous Annealed Particle Hydrogels for Tissue Engineering. Adv Therap 3(1):1900148

    Article  Google Scholar 

  38. Wu SW, Liu X, Miller AL II, Cheng YS, Yeh ML, Lu L (2018) Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohyd Polym 192:308–316

    Article  CAS  Google Scholar 

  39. Perez-San Vicente A, Peroglio M, Ernst M, Casuso P, Loinaz I, Grande H-J, Alini M, Eglin D, Dupin D (2017) Self-Healing Dynamic Hydrogel as Injectable Shock-Absorbing Artificial Nucleus Pulposus. Biomacromol 18(8):2360–2370

    Article  CAS  Google Scholar 

  40. Song KH, Highley CB, Rouff A, Burdick JA (2018) Complex 3D-Printed Microchannels within Cell-Degradable Hydrogels. Adv Funct Mater 28(31):1801331

    Article  Google Scholar 

  41. Chen Y, Diaz-Dussan D, Wu D, Wang W, Peng Y-Y, Asha AB, Hall DG, Ishihara K, Narain R (2018) Bioinspired Self-Healing Hydrogel Based on Benzoxaborole-Catechol Dynamic Covalent Chemistry for 3D Cell Encapsulation. ACS Macro Lett 7(8):904–908

    Article  CAS  Google Scholar 

  42. Zhao L, Niu L, Liang H, Tan H, Liu C, Zhu F (2017) pH and Glucose Dual-Responsive Injectable Hydrogels with Insulin and Fibroblasts as Bioactive Dressings for Diabetic Wound Healing. ACS Appl Mater Interfaces 9(43):37563–37574

    Article  CAS  PubMed  Google Scholar 

  43. Bilal M, Rasheed T, Zhao Y, Iqbal HMN (2019) Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. Int J Biol Macromol 124:742–749

    Article  CAS  PubMed  Google Scholar 

  44. He K, Chen G, Zeng G, Chen A, Huang Z, Shi J, Huang T, Peng M, Hu L (2018) Three-dimensional graphene supported catalysts for organic dyes degradation. Appl Catal B: Environ 228:19–28

    Article  CAS  Google Scholar 

  45. An H, Xu K, Chang L, Wang Y, Qin J, Li W (2018) Thermo-responsive self-healable hydrogels with extremely mild base degradability and bio-compatibility. Polymer 147:38–47

    Article  CAS  Google Scholar 

  46. Chang R, An H, Li X, Zhou R, Qin J, Tian Y, Deng K (2017) Self-healable polymer gels with multi-responsiveness of gel-sol-gel transition and degradability. Polym Chem 8(7):1263–1271

    Article  CAS  Google Scholar 

  47. Wu L, McHale R, Feng G, Wang X (2011) RAFT Synthesis and Self-Assembly of Free-Base Porphyrin Cored Star Polymers. Int J Polym Sci 2011:2341–2348

    Article  Google Scholar 

  48. An H, Chang L, Shen J, Zhao S, Zhao M, Wang X, Qin J (2019) Light emitting self-healable hydrogel with bio-degradability prepared form pectin and Tetraphenylethylene bearing polymer. J Polym Res 26(2):26

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (51673016), Natural Science Foundation of Hebei Province (B2018201140), Program of Excellent Innovative Talents in Hebei Provincial Institution of Higher Education (No. SLRC2017048), Jiangsu Key Laboratory of Advanced Functional Polymers Design and Application, Soochow University (KJS2008) and State Key Laboratory of Organic-Inorganic Composites (oic-202001005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingna He or Jianglei Qin.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 255 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Chang, L., Zhou, Z. et al. Pectin-based self-healing hydrogel with NaHCO3 degradability for drug loading and release. J Polym Res 28, 59 (2021). https://doi.org/10.1007/s10965-021-02430-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02430-3

Keywords

Navigation