Skip to main content
Log in

Electrospun egg white/polyvinyl alcohol fiber dressing to accelerate wound healing

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The purpose of this experiment was to prepare a new biological dressing for skin defect healing by electrospinning. Membranes consisting of egg white (EW) with 12% polyvinyl alcohol (PVA) solution (v/v, 60EW/40PVA, 50EW/50PVA, 40EW/60PVA) were obtained by electrospinning. The biological properties of the resulting fibrous membranes were tested in vitro and in vivo. Scanning electron microscopy (SEM) showed that the EW/PVA nanofiber membranes had a uniformly porous and smooth fibrous structure. The fiber thickened with increasing EW proportion. X-ray diffraction (XRD) showed that crosslinking improved the crystallinity of the composite fiber films. Fourier transform infrared (FT-IR) spectroscopy showed that PVA and EW existed independently in the composite fiber membranes after crosslinking. Mechanical tests showed that the tensile modulus and tensile strength of the fibrous membranes increased significantly after crosslinking. In vitro degradation experiments showed that crosslinking improved the stability of the EW/PVA nanofiber membranes in water. Cytotoxicity and cell proliferation tests proved the good biocompatibility of the fibrous membranes, with 60EW/40PVA significantly promoting cell proliferation. A full-thickness skin defect rat model confirmed that 60EW/40PVA significantly enhanced full-thickness skin wound healing and regeneration. This experiment verified the feasibility of using the EW/PVA composite material to prepare electrospun fiber dressings and promote skin defect repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aytac Z, Yildiz ZI, Kayaci-Senirmak F, Tekinay T, Uyar T (2017) Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem 231:192–201. https://doi.org/10.1016/j.foodchem.2017.03.113

    Article  CAS  PubMed  Google Scholar 

  2. Faraji S, Nowroozi N, Nouralishahi A, Shabani Shayeh J (2020) Electrospun poly-caprolactone/graphene oxide/quercetin nanofibrous scaffold for wound dressing: evaluation of biological and structural properties. Life Sci 257:118062. https://doi.org/10.1016/j.lfs.2020.118062

    Article  CAS  PubMed  Google Scholar 

  3. Duygulu NE, Ciftci F, Ustundag CB (2020) Electrospun drug blended poly(lactic acid) (PLA) nanofibers and their antimicrobial activities. J Polym Res 27:232–242. https://doi.org/10.1007/s10965-020-02215-0

    Article  CAS  Google Scholar 

  4. Li X, Wang C, Yang S, Liu P, Zhang B (2018) Electrospun PCL/mupirocin and chitosan/lidocaine hydrochloride multifunctional double layer nanofibrous scaffolds for wound dressing applications. Int J Nanomed 13:5287–5299. https://doi.org/10.2147/ijn.S177256

    Article  CAS  Google Scholar 

  5. Teixeira MA, Paiva MC, Amorim MTP, Felgueiras AHP (2020) Electrospun nanocomposites containing cellulose and its derivatives modified with specialized biomolecules for an enhanced wound healing. Nanomaterials 10:557. https://doi.org/10.3390/nano10030557

    Article  CAS  PubMed Central  Google Scholar 

  6. Liu S, Zhang Q, Yu J et al (2020) Absorbable thioether grafted hyaluronic acid nanofibrous hydrogel for synergistic modulation of inflammation microenvironment to accelerate chronic diabetic wound healing. Adv Healthc Mater 9:e2000198. https://doi.org/10.1002/adhm.202000198

    Article  CAS  PubMed  Google Scholar 

  7. Hadisi Z, Farokhi M, Bakhsheshi-Rad HR et al (2020) Hyaluronic acid (HA)-based silk fibroin/zinc oxide core-shell electrospun dressing for burn wound management. Macromol Biosci 20:e1900328. https://doi.org/10.1002/mabi.201900328

    Article  CAS  PubMed  Google Scholar 

  8. Weijers M, van de Velde F, Stijnman A, van de Pijpekamp A, Visschers RW (2006) Structure and rheological properties of acid-induced egg white protein gels. Food Hydrocoll 20:146–159. https://doi.org/10.1016/j.foodhyd.2005.02.013

    Article  CAS  Google Scholar 

  9. Geng F, Huang X, Ma M (2016) Hen egg white ovomacroglobulin promotes fibroblast migration via mediating cell adhesion and cytoskeleton. J Sci Food Agric 96:3188–3194. https://doi.org/10.1002/jsfa.7498

    Article  CAS  PubMed  Google Scholar 

  10. You R, Zhang J, Gu S et al (2017) Regenerated egg white/silk fibroin composite films for biomedical applications. Mater Sci Eng C 79:430–435. https://doi.org/10.1016/j.msec.2017.05.063

    Article  CAS  Google Scholar 

  11. Jalili-Firoozinezhad S, Rajabi-Zeleti S, Mohammadi P et al (2015) Facile fabrication of egg white macroporous sponges for tissue regeneration. Adv Healthc Mater 4:2281–2290. https://doi.org/10.1002/adhm.201500482

    Article  CAS  PubMed  Google Scholar 

  12. Martín-Alfonso JE, Cuadri AA, Greiner A (2018) The combined effect of formulation and pH on properties of polyethylene oxide composite fiber containing egg albumen protein. Int J Biol Macromol 112:996–1004. https://doi.org/10.1016/j.ijbiomac.2018.02.045

    Article  CAS  PubMed  Google Scholar 

  13. Ma MX, Liu Q, Ye C, Grottkau B, Guo B, Song Y-F (2017) Preparation of P3HB4HB/(gelatin + PVA) composite scaffolds by coaxial electrospinning and its biocompatibility evaluation. Biomed Res Int 2017:1–12. https://doi.org/10.1155/2017/9251806

    Article  CAS  Google Scholar 

  14. Meng L, Arnoult O, Smith M, Wnek GE (2012) Electrospinning of in situ crosslinked collagen nanofibers. J Mater Chem 22:194412–219417. https://doi.org/10.1039/c2jm31618h

    Article  CAS  Google Scholar 

  15. Reddy N, Reddy R, Jiang Q (2015) Crosslinking biopolymers for biomedical applications. Trends Biotechnol 33:362–369. https://doi.org/10.1016/j.tibtech.2015.03.008

    Article  CAS  PubMed  Google Scholar 

  16. Shojaee M, Navaee F, Jalili-Firoozinezhad S, Faturechi R, Majidi M, Bonakdar S (2015) Fabrication and characterization of ovalbumin films for wound dressing applications. Mater Sci Eng C 48:158–164. https://doi.org/10.1016/j.msec.2014.11.063

    Article  CAS  Google Scholar 

  17. Powell HM, Boyce ST (2007) Wound closure with EDC cross-linked cultured skin substitutes grafted to athymic mice. Biomaterials 28:1084–1092. https://doi.org/10.1016/j.biomaterials.2006.10.011

    Article  CAS  PubMed  Google Scholar 

  18. Gupta B, Agarwal R, Sarwar Alam M (2013) Preparation and characterization of polyvinyl alcohol-polyethylene oxide-carboxymethyl cellulose blend membranes. J Appl Polym Sci 127:1301–1038. https://doi.org/10.1002/app.37665

    Article  CAS  Google Scholar 

  19. Xi Y, Ge J, Guo Y, Lei B, Ma PX (2018) Biomimetic elastomeric polypeptide-based nanofibrous matrix for overcoming multidrug-resistant bacteria and enhancing full-thickness wound healing/skin regeneration. ACS Nano 12:10772–10784. https://doi.org/10.1021/acsnano.8b01152

    Article  CAS  PubMed  Google Scholar 

  20. Yang X, Yang J, Wang L et al (2017) Pharmaceutical intermediate-modified gold nanoparticles: against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano 11:5737–5745. https://doi.org/10.1021/acsnano.7b01240

    Article  CAS  PubMed  Google Scholar 

  21. Pal P, Mahato M, Kamilya T, Tah B, Sarkar R, Talapatra GB (2011) Fibrillation of egg white ovalbumin: a pathway via biomineralization. J Phys Chem B 115:4259–4265. https://doi.org/10.1021/jp200607x

    Article  CAS  PubMed  Google Scholar 

  22. Tran HA, Ly KL, Fox KE, Tran PA, Nguyen TH (2019) Immobilization of antimicrobial silver and antioxidant flavonoid as a coating for wound dressing materials. Int J Nanomedicine 14:9929–9939. https://doi.org/10.2147/ijn.S230214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Augustine R, Malik HN, Singhal DK et al (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21:347–363. https://doi.org/10.1007/s10965-013-0347-6

    Article  CAS  Google Scholar 

  24. Kim TH, Jung Y, Kim SH (2018) Nanofibrous electrospun heart decellularized extracellular matrix-based hybrid scaffold as wound dressing for reducing scarring in wound healing. Tissue Eng Part A 24:830–848. https://doi.org/10.1089/ten.TEA.2017.0318

    Article  CAS  PubMed  Google Scholar 

  25. Jiang S, Song P, Guo H et al (2016) Blending PLLA/tannin-grafted PCL fiber membrane for skin tissue engineering. J Mater Sci 52:1617–1624. https://doi.org/10.1007/s10853-016-0455-x

    Article  CAS  Google Scholar 

  26. Zhang Y, Lu L, Chen Y et al (2019) Polydopamine modification of silk fibroin membranes significantly promotes their wound healing effect. Biomater Sci 7:5232–5237. https://doi.org/10.1039/c9bm00974d

    Article  CAS  PubMed  Google Scholar 

  27. Cheng Y, Hu Z, Zhao Y et al (2019) Sponges of carboxymethyl chitosan grafted with collagen peptides for wound healing. Int J Mol Sci 20:3890. https://doi.org/10.3390/ijms20163890

    Article  CAS  PubMed Central  Google Scholar 

  28. Jiang H, Zheng M, Liu X et al (2019) Feasibility study of tissue transglutaminase for self-catalytic cross-linking of self-assembled collagen fibril hydrogel and its promising application in wound healing promotion. ACS Omega 4:12606–12615. https://doi.org/10.1021/acsomega.9b01274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mabrouk M, Choonara YE, Marimuthu T et al (2016) Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing. Int J pharm 507:41–49. https://doi.org/10.1016/j.ijpharm.2016.05.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (81960416), Department of Science and Technology of Guizhou Province ([2020]6013, [2020]4Y137, [2010]3166), and Department of Science and Technology of Guiyang City (2019-1-3, 2019-1-38). Thanks to Dr. Yi Zhang and Dr. Liping Shu for providing an effective discussion in this study.

Author information

Authors and Affiliations

Authors

Contributions

Tao Lu, Qiang Zou and Chuan Ye conceived and designed the experiments. Tao Lu performed the experiments. Kunzhi Zhu, Daizhu Yuan and Minxian Ma contributed helpful discussion during the experiment. Kunzhi Zhu provided effective assistance in the supplementary data of the revised manuscript. All authors have been involved in drafting the manuscript. Chuan Ye reviewed and revised the manuscript. All authors agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Chuan Ye.

Ethics declarations

Conflict interest

There are no conflicts to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

a These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Zou, Q., Zhu, K. et al. Electrospun egg white/polyvinyl alcohol fiber dressing to accelerate wound healing. J Polym Res 28, 67 (2021). https://doi.org/10.1007/s10965-021-02422-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-021-02422-3

Keywords

Navigation