Skip to main content
Log in

Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

As pharmaceutical carrier materials having antibacterial and pH-sensitive properties, hydrogels have great potential for clinical applications. Alginate based hydrogels were designed as an oral drug carrier and investigated for the drug release study in biomedical fields especially the colon-targeted system. Structural changes of synthesized hydrogel have been characterized using Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) devices. Hydrogels have been studied for their water absorption behavior under the influence of various monomer compositions and changing ambient conditions such as salt, pH and temperature. In this study, diclofenac sodium was used as a model drug to investigate the in vitro release behavior at simulated intestinal (pH 7.0) and gastric fluid (pH 1.2). Lastly, the antibacterial effect of hydrogels and drug-loaded hydrogels was characterized using a disc diffusion method against Gram-positive and Gram-negative bacteria. The suitability of controlled drug release for the use of these new hydrogels in the pharmaceutical and biomedical field has been investigated and our results have shown that the produced hydrogels are promising materials for developing pH-controlled drug delivery devices like capsules for oral use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Elsayed MM (2019) Hydrogel preparation technologies: relevance kinetics, thermodynamics and scaling up aspects. J Polym Environ 27(4):871–891. https://doi.org/10.1007/s10924-019-01376-4

    Article  CAS  Google Scholar 

  2. Zhou M, Ye X, Liu K, Hu J, Qian X (2015) Tunable thermo-responsive supramolecular hydrogel: design, characterization, and drug release. J Polym Res 22(170):1–8. https://doi.org/10.1007/s10965-015-0804-5

    Article  CAS  Google Scholar 

  3. Wei W, Meng C, Wang Y, Huang Y, Du W, Li H, Liu Y, Song H, Tang F (2019) The interaction between self – assembling peptides and emodin and the controlled release of emodin from in-situ hydrogel. Artif Cell Nanomed Biotech 47(1):3961–3975. https://doi.org/10.1080/21691401.2019.1673768

    Article  CAS  Google Scholar 

  4. Papavasiliou G, Sokic S, Turturro M (2012) Synthetic PEG hydrogels as extracellular matrix mimics for tissue engineering applications. Biotechnology-molecular studies and novel applications for improved quality of human life. InTech, London, UK, pp 111–134. https://doi.org/10.5772/31695

    Chapter  Google Scholar 

  5. Ma X, Wen G (2020) Development history and synthesis of super-absorbent polymers: a review. J Polym Res 27:136. https://doi.org/10.1007/s10965-020-02097-2

    Article  CAS  Google Scholar 

  6. El-Sherbiny IM, Khalil IA, Ali IH (2018) Updates on stimuli-responsive polymers: synthesis approaches and features. In: Thakur VK, Thakur MK (eds) Polymer Gels, vol 18. Springer Singapore, Singapore, pp 129–146. https://doi.org/10.1007/978-981-10-6086-1_4

    Chapter  Google Scholar 

  7. Löwenberg C, Balk M, Wischke C, Behl M, Lendlein A (2017) Shape-memory hydrogels: evolution of structural principles to enable shape switching of hydrophilic polymer networks. Acc Chem Res 50(4):723–732. https://doi.org/10.1021/acs.accounts.6b00584

    Article  CAS  PubMed  Google Scholar 

  8. Wells CM, Harris M, Choi L, Murali VP, Guerra FD, Jennings JA (2019) Stimuli-responsive drug release from smart polymers. JFB 10(3):34. https://doi.org/10.3390/jfb10030034

    Article  CAS  Google Scholar 

  9. Nie J, Pei B, Wang Z, Hu Q (2019) Construction of ordered structure in polysaccharide hydrogel: a review. Carbohydr Polym 205:225–235. https://doi.org/10.1016/j.carbpol.2018.10.033

    Article  CAS  PubMed  Google Scholar 

  10. Sami El-banna F, Mahfouz ME, Leporatti S, El-Kemary M, Hanafy NAN (2019) Chitosan as a natural copolymer with unique properties for the development of hydrogels. App Sci 9(11):2193. https://doi.org/10.3390/app9112193

    Article  CAS  Google Scholar 

  11. Thakur S, Thakur VK, Arotiba OA (2018) History, classification, properties and application of hydrogels: an overview. In: Thakur VK, Thakur MK (eds) Hydrogels, vol 93. Springer Singapore, Singapore, pp 29–50. https://doi.org/10.1007/978-981-10-6077-9_2

    Chapter  Google Scholar 

  12. Shitole AA, Raut PW, Khandwekar A, Sharma N, Baruah M (2019) Design and engineering of polyvinyl alcohol based biomimetic hydrogels for wound healing and repair. J Polym Res 26: 201. https://doi.org/10.1007/s10965-019-1874-6

  13. Alvarez-Lorenzo C, Concheiro A (2019) Smart drug release from medical devices. J Pharmacol Exp Ther 370(3):544–554. https://doi.org/10.1124/jpet.119.257220

    Article  CAS  PubMed  Google Scholar 

  14. Lin D, Lei L, Shi S, Li X (2019) Stimulus-responsive hydrogel for ophthalmic drug delivery. Macromol Biosci 19(6):1900001. https://doi.org/10.1002/mabi.201900001

    Article  CAS  Google Scholar 

  15. Altomare L, Bonetti L, Campiglio CE, De Nardo L, Draghi L, Tana F, Farè S (2018) Biopolymer-based strategies in the design of smart medical devices and artificial organs. IJAO 41(6) 337-359.: https://doi.org/10.1177/0391398818765

  16. Zhu T, Mao J, Cheng Y, Liu H, Lv L, Ge M, Li S, Huang J, Chen Z, Li H, Yang L, Lai Y (2019) Recent progress of polysaccharide-based hydrogel interfaces for wound healing and tissue engineering. Adv Mater Interfaces 6(17):1900761. https://doi.org/10.1002/admi.201900761

    Article  CAS  Google Scholar 

  17. Narayanaswamy R, Torchilin VP (2019) Hydrogels and their applications in targeted drug delivery. Molecules 24(3):603. https://doi.org/10.3390/molecules24030603

    Article  CAS  PubMed Central  Google Scholar 

  18. Hussain MA, Kiran L, Haseeb MT, Hussain I, Hussain SZ (2020) Citric acid crosslinking of mucilage from Cydonia oblonga engenders a superabsorbent, pH-sensitive and biocompatible polysaccharide offering on-off swelling and zero-order drug release. J Polym Res 27:49. https://doi.org/10.1007/s10965-020-2025-9

    Article  CAS  Google Scholar 

  19. Palem RR, Shimoga G, Rao KK, Lee S-H, Kang TJ (2020) Guar gum graft polymer-based silver nanocomposite hydrogels: synthesis, characterization and its biomedical applications. J Polym Res 27:68. https://doi.org/10.1007/s10965-020-2026-8

    Article  CAS  Google Scholar 

  20. Ozay O, Ilgin P, Ozay H, Gungor Z, Yilmaz B, Kıvanç MR (2020) The preparation of various shapes and porosities of hydroxyethyl starch/p(HEMA-co-NVP) IPN hydrogels as programmable carrier for drug delivery. J Macromol Sci Part A Pure Appl Chem 57(5):379–387. https://doi.org/10.1080/10601325.2019.1700803

  21. Ijaz H, Tulain UR (2019) Development of interpenetrating polymeric network for controlled drug delivery and its evaluation. Intern J Polym Mat Polym Biomat 68(18):1099–1107. https://doi.org/10.1080/00914037.2018.1534110

    Article  CAS  Google Scholar 

  22. Mignon A, de Belie N, Dubruel P, Vlierberghe SV (2019) Superabsorbent polymers: a review on the characteristics and applications of synthetic, polysaccharide-based, semi-synthetic and ‘smart’ derivatives. Eur Polym J 117:165–178. https://doi.org/10.1016/j.eurpolymj.2019.04.054

  23. Ilgin P, Ozay H, Ozay O (2019) A new dual stimuli responsive hydrogel: modeling approaches for the prediction of drug loading and release profile. Eur Polym J 113:244–253. https://doi.org/10.1016/j.eurpolymj.2019.02.003

  24. Havanur S, Farheenand V, JagadeeshBabu PE (2019) Synthesis and optimization of poly (N,N-diethylacrylamide) hydrogel and evaluation of its anticancer drug doxorubicin’s release behavior. Iran Polym J 28:99–112

    Article  CAS  Google Scholar 

  25. Jalababu R, Rao KK, Rao BS. Reddy KVNS (2020) Dual responsive GG-g-PNPA/PIPAM based novel hydrogels for the controlled release of anti- cancer agent and their swelling and release kinetics. J Polym Res 27: 83. https://doi.org/10.1007/s10965-020-02061-0

  26. Wang B, Wan Y, Zheng Y, Lee X, Liu T, Yu Z, Huang J, Ok YS, Chen J, Gao B (2019) Alginate-based composites for environmental applications: a critical review. Crit Rev Environ Sci Technol 49(4):318–356. https://doi.org/10.1080/10643389.2018.1547621

    Article  CAS  Google Scholar 

  27. Aderibigbe BA, Buyana B (2018) Alginate in wound dressings. Pharmaceutics 10(2):42. https://doi.org/10.3390/pharmaceutics10020042

    Article  CAS  PubMed Central  Google Scholar 

  28. Miles JR, Laughlin TD, Sargus-Patino C, Pannier AK (2017) In vitro porcine blastocyst development in three-dimensional alginate hydrogels. Mol Reprod Dev 84(9):775–787. https://doi.org/10.1002/mrd.22814

    Article  CAS  PubMed  Google Scholar 

  29. Giri TK, Thakur D, Alexander A, Ajazuddin BH, Tripathi DK (2012) Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications. Curr Drug Deliv 9(6):539–555. https://doi.org/10.2174/156720112803529800

    Article  CAS  PubMed  Google Scholar 

  30. Dadfar SMR, Pourmahdian S, Tehranchi MM, Dadfar SM (2019) Novel dual-responsive semi-interpenetrating polymer network hydrogels for controlled release of anticancer drugs. J Biomed Mater Res 107(10):2327–2339. https://doi.org/10.1002/jbm.a.36741

    Article  CAS  Google Scholar 

  31. Zhang S, Han D, Ding Z, Wang X, Zhao D, Hu Y, Xiao X (2019) Fabrication and characterization of one interpenetrating network hydrogel based on sodium alginate and polyvinyl alcohol. J Wuhan Univ Technol Mat Sci Edit 34(3):744–751. https://doi.org/10.1007/s11595-019-2112-0

    Article  CAS  Google Scholar 

  32. Khalid I, Ahmad M, Usman Minhas M, Barkat K, Sohail M (2018) Cross-linked sodium alginate-g-poly(acrylic acid) structure: a potential hydrogel network for controlled delivery of loxoprofen sodium. Adv Polym Technol 37(4):985–995. https://doi.org/10.1002/adv.21747

    Article  CAS  Google Scholar 

  33. Bajpai AK, Vishwakarma A, Bajpai J (2019) Synthesis and characterization of amoxicillin loaded poly (vinyl alcohol)-g-poly (acrylamide) (PVA-g-PAM) hydrogels and study of swelling triggered release of antibiotic drug. Polym. Bull. 76(7): 3269-3295. https://doi.org/10.1007/s00289-018-2536-2

  34. Kusuktham B (2006) Preparation of interpenetrating polymer network gel beads for dye absorption. J Appl Polym Sci 102(2):1585–1591. https://doi.org/10.1002/app.23882

    Article  CAS  Google Scholar 

  35. Shabir F, Erum A, Tulain UR, Hussain MA, Ahmad M, Akhter F (2017) Preparation and characterization of pH sensitive crosslinked linseed polysaccharides-co-acrylic acid/methacrylic acid hydrogels for controlled delivery of ketoprofen. Desig Monom Polym 20(1):485–495. https://doi.org/10.1080/15685551.2017.1368116

    Article  CAS  Google Scholar 

  36. Sadeghi M (2011) Synthesis of starch-g-poly(acrylic acid-co-2-hydroxy ethyl methacrylate) as a potential pH-sensitive hydrogel-based drug delivery system. Turk J Chem 35:723–733. https://doi.org/10.3906/kim-1103-27

    Article  CAS  Google Scholar 

  37. Ganguly S, Das NC (2015) Synthesis of a novel pH responsive phyllosilicate loaded polymeric hydrogel based on poly(acrylic acid-co-N-vinylpyrrolidone) and polyethylene glycol for drug delivery: Modelling and kinetics study for the sustained release of an antibiotic drug. RSC Adv 5:18312–18327

    Article  CAS  Google Scholar 

  38. Pathania D, Verma C, Negi P, Tyagi I, Asif M, Kumar NS, Al-Ghurabi EH, Agarwal S, Gupta VK (2018) Novel nanohydrogel based on itaconic acid grafted tragacanth gum for controlled release of ampicillin. Carbohydr Polym 196:262–271. https://doi.org/10.1016/j.carbpol.2018.05.040

    Article  CAS  PubMed  Google Scholar 

  39. Rasool A, Ata S, Islam A, Khan RU (2019) Fabrication of novel carrageenan based stimuli responsive injectable hydrogels for controlled release of cephradine. RSC Adv 9(22):12282–12290. https://doi.org/10.1039/C9RA02130B

    Article  CAS  Google Scholar 

  40. Cheong M, Zhitomirsky I (2008) Electrodeposition of alginic acid and composite films. Coll Surf A Physicochem Eng Asp 328(1–3):73–78. https://doi.org/10.1016/j.colsurfa.2008.06.019

    Article  CAS  Google Scholar 

  41. Pourjavadi A, Farhadpour B, Seidi F (2008) Synthesis and investigation of swelling behavior of grafted alginate/alumina superabsorbent composite. Starch - Stärke 60(9):457–466. https://doi.org/10.1002/star.200800208

    Article  CAS  Google Scholar 

  42. Şolpan D, Kölge Z (2006) Adsorption of methyl violet in aqueous solutions by poly(N-vinylpyrrolidone-co-methacrylic acid) hydrogels. Radiat Phys Chem 75(1):120–128. https://doi.org/10.1016/j.radphyschem.2005.06.005

    Article  CAS  Google Scholar 

  43. Abou Taleb MF (2013) Radiation synthesis of multifunctional polymeric hydrogels for oral delivery of insulin. Intern J Biol Macromol 62:341–347. https://doi.org/10.1016/j.ijbiomac.2013.09.004

    Article  CAS  Google Scholar 

  44. Yin L, Ding JY, Fei L, He M, Cui F, Tang C, Yin C (2008) Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles. Int J Pharm 350(1–2):220–229. https://doi.org/10.1016/j.ijpharm.2007.08.051

    Article  CAS  PubMed  Google Scholar 

  45. Moin A, Hussain T, Gowda DV (2017) Enteric delivery of diclofenac sodium through functionally modified poly(acrylamide-grafted-ghatti gum)-based ph-sensitive hydrogel beads: development, formulation and evaluation. J Young Pharm 9(4):525–536. https://doi.org/10.5530/jyp.2017.9.102

    Article  CAS  Google Scholar 

  46. Ng VWL, Chan JMW, Sardon H, Ono RJ, García JM, Yang YY, Hedrick JL (2014) Antimicrobial hydrogels: a new weapon in the arsenal against multidrug-resistant infections. Adv Drug Deliv Rev 78:46–62. https://doi.org/10.1016/j.addr.2014.10.028

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Çanakkale Onsekiz Mart University the Scientific Research Coordination Unit (Project number: FBA-2018-2575).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinar Ilgin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilgin, P., Ozay, H. & Ozay, O. Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier. J Polym Res 27, 251 (2020). https://doi.org/10.1007/s10965-020-02231-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-020-02231-0

Keywords

Navigation