Skip to main content
Log in

Optimization of reaction parameters for synthesis of Cyclodextrin nanosponges in controlled nanoscopic size dimensions

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Cyclodextrin nanosponges are hyper-cross-linked polymers obtained by reaction of hydroxyl groups present on cyclodextrins with an appropriate polyfunctional cross-linker to form solid particles with a rather spherical morphology. Convective heating method has been the most successful and popular approach since the synthesis of nanosponges was first reported. However, problems of low yields, and batch to batch variations have not been addressed. These variations are largely due to differences in experimental conditions such as reaction temperature in °C (A), reaction time in min (B) and stirring speed in rpm (C). The reaction conditions for the synthesis of nanosponges were optimized by using central composite design and response surface methodology. The optimization model predicted a yield of 88.0484% and particle size of about 265.446 nm with A, B and C levels of 105.92, 306.92 and 5000 respectively. The observed responses were in close agreement with the predicted values. The formation of nanosponges was confirmed by FTIR spectroscopy. The nanosponges prepared under optimized conditions exhibited homogeneous size distribution and spherical morphology, which was confirmed by Transmission electron microscopy. The thermal stability determined by DSC is very similar to the previous results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rossi B, Fontana A, Giarola M, Mariotto G, Mele A, Punta C, Melone L, Toraldoc F, Trotta F (2014) Glass-like dynamics of new cross-linked polymeric systems: behavior of the boson peak. J. Non-Cryst. Solids 401:73–77

    Article  CAS  Google Scholar 

  2. Chilajwar SV, Pednekar PP, Jadhav KR, Gupta GJ, Kadam VJ (2014) Cyclodextrin-based nanosponges: a propitious platform for enhancing drug delivery. Expert Opin. Drug Deliv. 11(1):111–120

    Article  CAS  Google Scholar 

  3. Crupi V, Majolino D, Mele A, Melone L, Punta C, Rossi B, Toraldo F, Trotta F, Venuti V (2014) Direct evidence of gel-sol transition in cyclodextrin-based hydrogels as revealed by FTIR-ATR spectroscopy. Soft Matter 10(13):2320–2326

    Article  CAS  Google Scholar 

  4. Selvamuthukumar S, Anandam S, Kannan K, Manavalan R (2012) Nanosponges: a novel class of drug delivery system – review. J. Pharm. Pharm. Sci. 15(1):103–111

    Article  Google Scholar 

  5. Longo C, Gambara G, Espina V, Luchini A, Bishop B, Patanarut AS, Petricoin EF, Beretti F, Ferrari B, Garaci E, De Pol A, Pellacani G, Liotta LA (2011) A novel biomarker harvesting nanotechnology identifies Bak as a candidate melanoma biomarker in serum. Exp. Dermatol. 20(1):29–34

    Article  Google Scholar 

  6. Sharma R, Pathak K (2011) Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation. Pharm. Dev. Technol. 16(4):367–376

    Article  CAS  Google Scholar 

  7. Baglieri A, Nègre M, Trotta F, Bracco P, Gennari M (2013) Organo-clays and nanosponges for acquifer bioremediation: adsorption and degradation of triclopyr. J. Environ. Sci. Health B 48(9):784–792

    Article  CAS  Google Scholar 

  8. Mamba BB, Krause RW, Malefetse TJ, Gericke G, Sithole SP (2008) Cyclodextrin nanosponges in the removal of organic matter to produce ultrapure water for power generation. J. Water Supply Res Technol. 34(5):299–304

    Google Scholar 

  9. Boscolo B, Trotta F, Ghibaudi E (2010) High catalytic performances of Pseudomonas fluorescens lipase adsorbed on a new type of cyclodextrin-based nanosponges. J. Mol. Catal. B Enzym. 62(2):155–161

    Article  CAS  Google Scholar 

  10. Seglie L, Martina K, Devecchi M, Roggero C, Trotta F, Scariot V (2011) β-Cyclodextrin-based nanosponges as carriers for 1-MCP in extending the postharvest longevity of carnation cut flowers: an evaluation of different degrees of cross-linking. Plant Growth Regul. 65(3):505–511

    Article  CAS  Google Scholar 

  11. Cavalli R, Akhter AK, Bisazza A, Giustetto P, Trotta F, Vavia P (2010) Nanosponge formulations as oxygen delivery systems. Int. J. Pharm. 402(1–2):254–257

    Article  CAS  Google Scholar 

  12. Alongi J, Poskovic M, Frache A, Trotta F (2010) Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties. Polym. Degrad. Stab. 95(10):2093–2100

    Article  CAS  Google Scholar 

  13. Alongi J, Poskovic M, Frache A, Trotta F (2011) Role of β-cyclodextrin nanosponges in polypropylene photooxidation. Carbohydr. Polym. 86(1):127–135

    Article  CAS  Google Scholar 

  14. Trotta F, Tumiatti V, Cavalli R, Roggero C, Mognetti B, Berta GN (2009) Cyclodextrin based nanosponges as a vehicle for antitumoral drugs. Patent WO 003656 A1

    Google Scholar 

  15. Mele A, Castiglione F, Malpezzi L, Ganazzoli F, Raffaini G, Trotta F, Rossi B, Fontana A (2011) HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges. J. Incl. Phenom. Macrocycl. Chem. 69(3–4):403–409

    Article  CAS  Google Scholar 

  16. Castiglione F, Crupi V, Majolino D, Mele A, Rossi B, Trotta F, Venuti V (2012) Inside new materials: an experimental numerical approach for the structural elucidation of nanoporous cross-linked polymers. J. Phys. Chem. B 116(43):13133–13140

    Article  CAS  Google Scholar 

  17. Rossi B, Caponi S, Castiglione F, Corezzi S, Fontana A, Giarola M, Mariotto G, Mele A, Petrillo C, Trotta F, Viliani G (2012) Networking properties of cyclodextrin-based cross-linked polymers probed by inelastic light-scattering experiments. J. Phys. Chem. B 116(17):5323–5327

    Article  CAS  Google Scholar 

  18. Castiglione F, Crupi V, Majolino D, Mele A, Panzeri W, Rossi B, Trotta F, Venuti V (2013) Vibrational dynamics and hydrogen bond properties of β-CD nanosponges: an FTIR-ATR, Raman and solid-state NMR spectroscopic study. J. Incl. Phenom. Macrocycl. Chem. 75(3–4):247–254

    Article  CAS  Google Scholar 

  19. Castiglione F, Crupi V, Majolino D, Mele A, Rossi B, Trotta F, Venuti V (2012) Effect of cross-linking properties on the vibrational dynamics of cyclodextrins-based polymers: an experimental-numerical study. J. Phys. Chem. B 116(27):7952–7958

    Article  CAS  Google Scholar 

  20. Crupi V, Fontana A, Giarola M, Majolino D, Mariotto G, Mele A, Melone L, Punta C, Rossi B, Trotta F, Venuti V (2013) Connection between the vibrational dynamics and the crosslinking properties in cyclodextrins-based polymers. J. Raman Spectrosc. 44(10):1457–1462

    Article  CAS  Google Scholar 

  21. Anandam S, Selvamuthukumar S (2014) Fabrication of cyclodextrin nanosponges for quercetin delivery: physicochemical characterization, photostability, and antioxidant effects. J. Mater. Sci. 49(2):8140–8153

    Article  CAS  Google Scholar 

  22. Swaminathan S, Vavia PR, Trotta F, Cavalli R, Tumbiolo S, Bertinetti L, Coluccia A (2013) Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J. Incl. Phenom. Macrocycl. Chem. 76(1–2):201–211

    Article  CAS  Google Scholar 

  23. Anandam S, Selvamuthukumar S (2014) Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology. J. Porous. Mater. 21(6):1015–1023

    Article  CAS  Google Scholar 

  24. Trotta F, Cavalli R, Tumiatti W, Zerbinati O, Rogero C, Vallero R (2007) Ultrasound-assisted synthesis of Cyclodextrin-based nanosponges. EP 1 786 841 B1

    Google Scholar 

  25. Carlson R (1992) Design and optimization in organic synthesis3rd edn. Elsevier, Amsterdam, New York

    Google Scholar 

  26. Rautio J, Perämäki P, Honkamo J, Jantunen H (2009) Effect of synthesis method variables on particle size in the preparation of homogeneous doped nano ZnO material. Microchem. J. 91(2):272–276

    Article  CAS  Google Scholar 

  27. Harang V, Karlsson A, Josefson M (2001) Liquid chromatography method development and optimization by statistical experimental design and chromatogram simulations. Cromatographia 54(11–12):703–709

    Article  CAS  Google Scholar 

  28. Ba-Abbad MM, Kadhum AA, Mohamad AB, Takriff MS, Sopian K (2013) Optimization of process parameters using D-optimal design for synthesis of ZnO nanoparticles via sol–gel technique. J. Ind. Eng. Chem. 19(1):99–105

    Article  CAS  Google Scholar 

  29. Abdolreza M, Siamak Z (2011) Modeling and optimization of a new impact-toughened epoxy nanocomposite using response surface methodology. J. Polym. Res. 18(4):509–517

    Article  Google Scholar 

  30. Trotta F, Cavalli R (2009) Characterization and applications of new hyper-cross-linked Cyclodextrins. Compos. Interfaces 16(1):39–48

    Article  CAS  Google Scholar 

  31. Shivakumar HN, Patel PB, Desai BG, Ashok P, Arulmozhi S (2007) Design and statistical optimization of glipizide loaded lipospheres using response surface methodology. Acta Pharma. 57(3):269–285

    CAS  Google Scholar 

  32. Nazzal S, Khan MA (2002) Response surface methodology for the optimization of ubiquinone self-nanoemulsified drug delivery system. AAPS PharmSciTech 3(1):23–31

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. K. Venu Gopal Reddy (Director, Central Facilities for Research and Development, Osmania University, Hyderabad) for assistance with FTIR analysis and Mr. Rajender (Centre for Nano Science & Technology, Jawaharlal Nehru Technological University, Hyderabad) for technical support with the XRD and TEM. We are very much grateful to UGC-SAP-DRS–PHASE I, New Delhi, India for providing facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the preparation of manuscript.

Corresponding author

Correspondence to Anandam Singireddy.

Ethics declarations

Competing interests

We both the authors declare that we do not have any competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singireddy, A., Pedireddi, S.R. & Subramanian, S. Optimization of reaction parameters for synthesis of Cyclodextrin nanosponges in controlled nanoscopic size dimensions. J Polym Res 26, 93 (2019). https://doi.org/10.1007/s10965-019-1754-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1754-0

Keywords

Navigation