Skip to main content
Log in

Tailoring the performance of bamboo filler reinforced epoxy composite: insights into fracture properties and fracture mechanism

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Due to the graded micro-structure and high specific strength-stiffness, bamboo micro fillers are systematically utilized in reinforcing different thermoset and thermoplastic polymers as replacement of conventional glass and carbon fillers. In this work, micro-size bamboo particle fillers are reinforced in ‘specific grade’ thermoset epoxy matrix and its fracture properties has been evaluated by following linear elastic fracture mechanics. To enhance its compatibility with the polymer matrix and to reduce the hydrophilicity, the bamboo micro fillers are surface modified through alkaline treatment. The extent of surface modification and removal of lower weight polymers from filler surface are examined and established by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis and thermogravimetric analysis. The fracture properties of bamboo-epoxy composite material are observed to be increasing with the addition of bamboo fillers and the maximum value of fracture toughness is 0.678 MPa.m0.5 which is 32% higher than the same for neat epoxy samples. In addition, the mechanisms of notch initiated fracture propagation have also been explained for the understanding of stress singularity present at the preexisted crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Nagarajan V, Mohanty AK, Misra M (2016) Perspective on Polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng 4:2899–2916

    Article  CAS  Google Scholar 

  2. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807

    Article  CAS  PubMed  Google Scholar 

  3. Haque MM, Islam MS, Islam MN (2012) Preparation and characterization of polypropylene composites reinforced with chemically treated coir. J Polym Res 19(5):9847

    Article  Google Scholar 

  4. Rahman MM, Netravali AN, Tiimob BJ, Rangari VK (2014) Bioderived “green” composite from soy protein and eggshell Nanopowder. ACS Sustain Chem Eng 2:2329–2337

    Article  CAS  Google Scholar 

  5. Kumar R, Kumar K, Sahoo P, Bhowmik S (2014) Study of mechanical properties of wood dust reinforced epoxy composite. Procedia Mater Sci 6:551–556

    Article  CAS  Google Scholar 

  6. Anand P, Rajesh D, Kumar MS, Raj IS (2018) Investigations on the performances of treated jute/Kenaf hybrid natural fiber reinforced epoxy composite. J Polym Res 25(4):94

    Article  Google Scholar 

  7. Liu D, Song J, Anderson DP, Chang PR, Hua Y (2012) Bamboo fiber and its reinforced composites: structure and properties. Cellulose 19:1449–1480

    Article  CAS  Google Scholar 

  8. Kumar R, Bhowmik S, Kumar K (2017) Establishment and effect of constraint on different mechanical properties of bamboo filler reinforced epoxy composite. Int Polym Process 32(3):308–315

    Article  CAS  Google Scholar 

  9. Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fibre reinforced polymer composites: an overview. Compos Part B 43:2883–2892

    Article  CAS  Google Scholar 

  10. Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  11. Kushwaha PK, Kumar R (2010) Bamboo fiber reinforced thermosetting resin composites: effect of graft copolymerization of fiber with methacrylamide. J Appl Polym Sci 118:1006–1013

    CAS  Google Scholar 

  12. Nirmal U, Hashim J, Low KO (2012) Adhesive wear and frictional performance of bamboo fibres reinforced epoxy composite. Tribol Int 47:122–133

    Article  CAS  Google Scholar 

  13. Yu Y, Huang X (2014) Yu W (2014) a novel process to improve yield and mechanical performance of bamboo fiber reinforced composite via mechanical treatments. Compos Part B 56:48–53

    Article  CAS  Google Scholar 

  14. Khalil AHPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D (2012) Hadi YS (2012) bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

    Article  Google Scholar 

  15. Rajulu AV, Baksh SA, Reddy GR, Chary KN (1998) (1998) chemical resistance and tensile properties of short bamboo fibre reinforced epoxy composites. J Reinf Plast Compos 17:1507–1511

    Article  CAS  Google Scholar 

  16. Liu H, Wu Q, Han G, Yao F, Kojima Y, Suzuki S (2008) Compatibilizing and toughening bamboo flour-filled HDPE composites: mechanical properties and morphologies. Compos Part A 39:1891–1900

    Article  CAS  Google Scholar 

  17. Zhou XX, Yu Y, Chen LH (2015) Effects of zirconaluminate coupling agent on mechanical properties, rheological behavior and thermal stability of bamboo powder/polypropylene foaming composites. Eur J Wood Prod 73:199–207

    Article  Google Scholar 

  18. Thakur VK, Kessler MR (2014) Synthesis and characterization of AN-g-SOY for sustainable polymer composites. ACS Sustain Chem Eng 2(10):2454–2460

    Article  CAS  Google Scholar 

  19. Kumar R, Kumar K, Bhowmik S (2017) Assessment and response of treated Cocos nucifera reinforced toughened epoxy composite towards fracture and viscoelastic properties. J Polym Environ 26:1–14. https://doi.org/10.1007/s10924-017-1150-y

    Article  CAS  Google Scholar 

  20. Henke L, Zarrinbakhsh N, Endres HJ, Misra M, Mohanty AK (2017) Biodegradable and bio-based green blends from carbon dioxide-derived bioplastic and poly (butylene succinate). J Polym Environ 25(2):499–509

    Article  CAS  Google Scholar 

  21. Nagarajan V, Mohanty AK, Misra M (2016b) Biocomposites with size-fractionated biocarbon: influence of the microstructure on macroscopic properties. ACS Omega 1(4):636–647

    Article  CAS  Google Scholar 

  22. Dang W, Kubouchi M, Yamamoto S, Sembokuya H, Tsuda K (2002) An approach to chemical recycling of epoxy resin cured with amine using nitric acid. Polymer 43(10):2953–2958

    Article  CAS  Google Scholar 

  23. Gorrasi G, Sorrentino A (2015) Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem 17(5):2610–2625

    Article  CAS  Google Scholar 

  24. Mishra S, Misra M, Tripathy SS, Nayak SK, Mohanty AK (2001) Graft copolymerization of acrylonitrile on chemically modified sisal fibers. Macromol Mater Eng 286:107–113

    Article  CAS  Google Scholar 

  25. Shekhawat A, Ritchie RO (2016) Toughness and strength of nanocrystallinegraphene. Nat Commun 7:10546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Behazin E, Misra M, Mohanty AK (2017) Sustainable biocarbon from pyrolyzed perennial grasses and their effects on impact modified polypropylene biocomposites. Compos Part B 118:116–124

    Article  CAS  Google Scholar 

  27. Kafy A, Kim HC, Zhai L, Kim JW, Kang TJ (2017) Cellulose long fibers fabricated from cellulose nano fibers and its strong and tough characteristics. Sci Rep 7(1):17683

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nam S, French AD, Condon BD, Concha M (2016) Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr Polym 135:1–9

    Article  CAS  PubMed  Google Scholar 

  29. French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896

    Article  CAS  Google Scholar 

  30. Sa Y, Guo Y, Feng X, Wang M, Li P, Gao Y, Yang X, Jiang T (2017) Are different crystallinity-index-calculating methods of hydroxyapatite efficient and consistent? New J Chem 41(13):5723–5731

    Article  CAS  Google Scholar 

  31. Segal LGJMA, Creely JJ, Martin Jr AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29(10):786–794

    Article  CAS  Google Scholar 

  32. Abidi N, Cabrales L, Eric H (2010) Thermogravimetric analysis of developing cotton fibers. Thermochim Acta 498:27–32

    Article  CAS  Google Scholar 

  33. Li Y, Jiang L, Xiong C, Peng W (2015) Effect of different surface treatment for bamboo Fiber on the crystallization behavior and mechanical property of bamboo Fiber/Nanohydroxyapatite/poly (lactic-co-glycolic) composite. Ind Eng Chem Res 54(48):12017–12024

    Article  CAS  Google Scholar 

  34. Ferreira MVF, Neves ACC, de Oliveira CG, Lopes FPD, Margem FM, Vieira CMF, Monteiro SN (2017) Thermogravimetric characterization of polyester matrix composites reinforced with eucalyptus fibers. J Mater Res Technol 6(4):396–400

    Article  CAS  Google Scholar 

  35. Kumar R, Kumar K, Bhowmik S (2018) Mechanical characterization and quantification of tensile, fracture and viscoelastic characteristics of wood filler reinforced epoxy composite, wood Sci. Technol 52(3):677–699

    CAS  Google Scholar 

  36. Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric behavior of natural fibers reinforced polymer composites—an overview. Mater Sci Eng A 557:17–28

    Article  CAS  Google Scholar 

  37. Spanoudakis J, Young RJ (1984) Crack propagation in a glass particle-filled epoxy resin. J Mater Sci 19(2):473–486

    Article  CAS  Google Scholar 

  38. Wong KJ, Yousif BF, Low KO, Ng Y, Tan SL (2010) Effects of fillers on the fracture behaviour of particulate polyester composites. J Strain Anal Eng Des 45(1):67–78

    Article  Google Scholar 

  39. Goyat MS, Suresh S, Bahl S, Halder S, Ghosh PK (2015) Thermomechanical response and toughening mechanisms of a carbon nano bead reinforced epoxy composite. Mater Chem Phys 166:144–152

    Article  CAS  Google Scholar 

  40. Singleton ACN, Baillie CA, Beaumont PWR, Peijs T (2003) On the mechanical properties, deformation and fracture of a natural fibre/recycled polymer composite. Compos Part B 34(6):519–526

    Article  Google Scholar 

  41. Li Y, Zhou Q, Zhang S, Huang P, Xu K, Wang F, Lu T (2018) On the role of weak interface in crack blunting process in nanoscale layered composites. Appl Surf Sci 433:957–962

    Article  CAS  Google Scholar 

  42. Kitey R, Phan AV, Tippur HV, Kaplan T (2006) Modeling of crack growth through particulate clusters in brittle matrix by symmetric-Galerkin boundary element method. Int J Fract 141(1–2):11–25

    Article  Google Scholar 

  43. Khan Z, Yousif BF, Islam M (2017) Fracture behaviour of bamboo fiber reinforced epoxy composites. Compos Part B 116:186–199

    Article  CAS  Google Scholar 

  44. James MN, Christopher CJ, Lu Y, Patterson EA (2012) Fatigue crack growth and craze-induced crack tip shielding in polycarbonate. Polymer 53(7):1558–1570

    Article  CAS  Google Scholar 

  45. Gope PC, Rao DK (2016) Fracture behaviour of epoxy biocomposite reinforced with short coconut fibres (Cocos nucifera) and walnut particles (Juglansregia L.). J Thermoplast Compos Mater 29(8):1098–1117

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge SAIF-IIT Bombay and SAIC-Gauhati University for providing necessary technical assistances for FTIR and XRD. The authors also would like to thank Machine element laboratory and Material testing laboratory, MED, NIT Silchar for giving essential research facilities. The first author gratefully acknowledges the Ministry of Human Resource Development (MHRD), GOI for fellowship during his PhD work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Bhowmik.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumar, K., Bhowmik, S. et al. Tailoring the performance of bamboo filler reinforced epoxy composite: insights into fracture properties and fracture mechanism. J Polym Res 26, 54 (2019). https://doi.org/10.1007/s10965-019-1720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-019-1720-x

Keywords

Navigation