Skip to main content
Log in

Enhanced interfacial properties of graphene oxide incorporated carbon fiber reinforced epoxy nanocomposite: a systematic thermal properties investigation

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstracts

In this study influence of the graphene oxide (GO) inclusion on the thermal properties of carbon fiber reinforced polymer (CFRP) hybrid composite is reported. Different wt% content of GO used for development of epoxy matrix and CFRP hybrid composite was prepared using compression moulding process. The nanocomposites were characterized by various techniques viz. DMA, DSC, TMA, and TGA. It is observed that in GO-epoxy resin composites, storage and loss modulus reached maximum for 0.3 wt% of GO. The storage modulus of CFRP hybrid composite is achieved almost double with the addition of 0.3 wt% of GO. The glass transition temperature (Tg) calculated from DMA and TMA of GO incorporated CFRP hybrid composites demonstrated the enhancement in Tg by 4 °C and 12 °C respectively over to CFRP composites at 0.3 wt% GO. This improvement at GO loading is because of constraint effect of GO sheets on the polymer chain mobility in the composite.

Figure: Proposed mechanism of GO influences on the CF-epoxy composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jang K, Cho W-J, Ha C-S (1999) Influence of processing method on the fracture toughness of thermoplastic-modified, carbon-fiber-reinforced epoxy composites. Compos Sci Technol 59:995–1001

    Article  CAS  Google Scholar 

  2. An F, Lu C, Li Y et al (2012) Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite. Mater Des 33:197–202

    Article  CAS  Google Scholar 

  3. Tsantzalis S, Karapappas P, Vavouliotis A, Tsotra P, Kostopoulos V, Tanimoto T, Friedrich K (2007) On the improvement of toughness of CFRPs with resin doped with CNF and PZT particles. Compos A: Appl Sci Manuf 38:1159–1162

    Article  Google Scholar 

  4. Davies P, Kausch H, Williams J et al (1992) Round-robin interlaminar fracture testing of carbon-fibre-reinforced epoxy and PEEK composites. Compos Sci Technol 43:129–136

    Article  CAS  Google Scholar 

  5. Pathak AK, Borah M, Gupta A, Yokozeki T, Dhakate SR (2016) Improved mechanical properties of carbon fiber/graphene oxide-epoxy hybrid composites. Compos Sci Technol 135:28–38

    Article  CAS  Google Scholar 

  6. Degrieck J, Van Paepegem W (2001) Fatigue damage modeling of fibre-reinforced composite materials: Review. Appl Mech Rev 54:279

    Article  Google Scholar 

  7. Chand S (2000). J Mater Sci 35:1303–1313

    Article  CAS  Google Scholar 

  8. Choi N, Kinloch A, Williams J (1999) Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, Mode II and Mixed-Mode I/II loading. J Compos Mater 33:73–100

    Article  CAS  Google Scholar 

  9. Davim JP, Reis P (2003) Study of delamination in drilling carbon fiber reinforced plastics (CFRP) using design experiments. Compos Struct 59:481–487

    Article  Google Scholar 

  10. Jiang Z, Zhang H, Zhang Z, Murayama H, Okamoto K (2008) Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix. Compos A: Appl Sci Manuf 39:1762–1767

    Article  Google Scholar 

  11. T Ogasawara, Y Ishida, T Kasai (2009) Compos Sci Technol 69: 2002

  12. Xu Y, Van Hoa S (2008) Mechanical properties of carbon fiber reinforced epoxy/clay nanocomposites. Compos Sci Technol 68:854–861

    Article  CAS  Google Scholar 

  13. Siddiqui NA, Woo RS, Kim J-K, Leung CC, Munir A (2007) Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos A: Appl Sci Manuf 38:449–460

    Article  Google Scholar 

  14. Aldajah S, Haik Y (2012) Transverse strength enhancement of carbon fiber reinforced polymer composites by means of magnetically aligned carbon nanotubes. Mater Des 34:379–383

    Article  CAS  Google Scholar 

  15. Hsiao K-T, Alms J, Advani SG (2003) Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology 14:791–793

    Article  CAS  Google Scholar 

  16. Bekyarova E, ET Thostenson AY et al (2007) Functionalized single-walled carbon nanotubes for carbon fiber−epoxy composites†. J Phys Chem C 111:17865–17871

    Article  CAS  Google Scholar 

  17. Sharma S, Singh BP, Babal AS, Teotia S, Jyoti J, Dhakate S (2017) Structural and mechanical properties of free-standing multiwalled carbon nanotube paper prepared by an aqueous mediated process. J Mater Sci 52:7503–7515

    Article  CAS  Google Scholar 

  18. MJ Allen, VC Tung, RB Kaner (2009) Chem Rev 110: 132

  19. Stankovich S, Dikin DA, Dommett GH et al (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  20. M Borah, AK Pathak, DK Singh, P Pal, SR Dhakate (2017) Nanotechnology 28: 075602

  21. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  CAS  Google Scholar 

  22. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen SBT, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  23. Hummers Jr WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  24. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  25. Marcano DC, Kosynkin DV, Berlin JM, et al. (2010)

  26. T Livneh, TL Haslett, M Moskovits (2002) Physical Review B 66: 195110

  27. Pimenta M, Dresselhaus G, Dresselhaus MS, Cancado L, Jorio A, Saito R (2007). Phys Chem Chem Phys 9:1276

    Article  CAS  Google Scholar 

  28. Tuinstra F, Koenig JL (1970). J Chem Phys 53:1126–1130

    Article  CAS  Google Scholar 

  29. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited‖. J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  30. Jeong H-K, Lee YP, Lahaye RJ et al (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130:1362–1366

    Article  CAS  Google Scholar 

  31. Davoodi AH, Mazinani S, Sharif F, Ranaei-Siadat SO (2018) GO nanosheets localization by morphological study on PLA-GO electrospun nanocomposite nanofibers. J Polym Res 25:204

    Article  Google Scholar 

  32. G Wang, X Sun, C Liu, J Lian (2011) Appl Phys Lett 99: 053114

  33. Zhang S, Liu P, Zhao X, Xu J (2018) Enhanced tensile strength and initial modulus of poly(vinyl alcohol)/graphene oxide composite fibers via blending poly(vinyl alcohol) with poly(vinyl alcohol)-grafted graphene oxide. J Polym Res 25:65

    Article  Google Scholar 

  34. AK Pathak, V Kumar, S Sharma, T Yokozeki, S Dhakate (2018) J. Colloid Interface Sci

  35. Babal AS, Gupta R, Singh BP, Dhakate SR (2015) Depression in glass transition temperature of multiwalled carbon nanotubes reinforced polycarbonate composites: effect of functionalization. RSC Adv 5:43462–43472

    Article  CAS  Google Scholar 

  36. Jyoti J, Singh BP, Arya AK, Dhakate S (2016) Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv 6:3997–4006

    Article  CAS  Google Scholar 

  37. Chouhan DK, Kumar A, Rath SK, Kumar S, Alegaonkar PS, Harikrishnan G, Umasankar Patro T (2018) Laponite-graphene oxide hybrid particulate filler enhances mechanical properties of cross-linked epoxy. J Polym Res 25:60

    Article  Google Scholar 

  38. Faulstich de Paiva JM, Frollini E (2006) Unmodified and modified surface sisal fibers as reinforcement of phenolic and lignophenolic matrices composites: thermal analyses of fibers and composites. Macromol Mater Eng 291:405–417

    Article  CAS  Google Scholar 

  39. George K, Komalan C, Kumar P, Varughese K, Thomas S (2007)

  40. LA Pothan, Z Oommen, S Thomas (2003) Compos Sci Technol 63: 283

  41. Wan Y-J, Tang L-C, Gong L-X, Yan D, Li YB, Wu LB, Jiang JX, Lai GQ (2014) Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon 69:467–480

    Article  CAS  Google Scholar 

  42. Tang L-C, Wan Y-J, Yan D, Pei YB, Zhao L, Li YB, Wu LB, Jiang JX, Lai GQ (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27

    Article  CAS  Google Scholar 

  43. Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G (2010) Magnetically processed carbon nanotube/epoxy nanocomposites: Morphology, thermal, and mechanical properties. Polymer 51:1614–1620

    Article  CAS  Google Scholar 

  44. Schick C, Lexa, D, Leibowitz L (2012) Characterization of materials

  45. Riga A, Collins R (2000) Encyclopedia of Analytical Chemistry

  46. Cassettari M, Papucci F, Salvetti G, Tombari E, Veronesi S, Johari G (1993) Simultaneous measurements of enthalpy and heat capacity of a thermosetting polymer during the curing process. Rev Sci Instrum 64:1076–1080

    Article  CAS  Google Scholar 

  47. Zo HJ, Joo SH, Kim T, Seo PS, Kim JH, Park JS (2014) Enhanced mechanical and thermal properties of carbon fiber composites with polyamide and thermoplastic polyurethane blends. Fibers and Polymers 15:1071–1077

    Article  CAS  Google Scholar 

  48. Lei L, Shan J, Hu J, Liu X, Zhao J, Tong Z (2016) Co-curing effect of imidazole grafting graphene oxide synthesized by one-pot method to reinforce epoxy nanocomposites. Compos Sci Technol 128:161–168

    Article  CAS  Google Scholar 

  49. Corcione CE, Frigione M (2012) Characterization of nanocomposites by thermal analysis. Materials 5:2960–2980

    Article  CAS  Google Scholar 

  50. Wang CC, Zhao YY, Ge HY, Qian RS (2016) Polym Compos

  51. Hobbiebrunken T, Fiedler B, Hojo M, Ochiai S, Schulte K (2005) Microscopic yielding of CF/epoxy composites and the effect on the formation of thermal residual stresses. Compos Sci Technol 65:1626–1635

    Article  CAS  Google Scholar 

  52. Tezvergil A, Lassila LV, Vallittu PK (2003) The effect of fiber orientation on the thermal expansion coefficients of fiber-reinforced composites. Dent Mater 19:471–477

    Article  CAS  Google Scholar 

  53. KF Babu, WM Choi (2016) Compos Sci Technol 122: 82

  54. B Qi, S Lu, X Xiao, L Pan, F Tan, J Yu (2014) Express Polym Lett 8

  55. Li F, Qu C-B, Hua Y, Xiao H-M, Fu S-Y (2017) Largely improved dimensional stability of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating at a low content. Carbon 119:339–349

    Article  CAS  Google Scholar 

  56. Johnson RR, Kural MH, Mackey GB (1981) DTIC Document,

  57. Bandeira CF, Montoro SR, Espindola EL, Botelho EC, Costa ML, Cioffi MOH (2015) Applied Mechanics and MaterialsTrans Tech Publ,

  58. B Yuan, C Bao, L Song, N Hong, KM Liew, Y Hu (2014) Chem Eng J 237: 411

  59. J Tang, H Zhou, Y Liang, X Shi, X Yang, J Zhang (2014) J Nanomater 2014: 175

Download references

Acknowledgements

Authors are highly grateful to Director, CSIR-NPL, and Head, Advanced Materials and Devices Division, for his kind permission to publish the results. Authors are like to thanks, R. K. Seth, for providing TGA, DSC and TMA and Jai Tawale for providing in SEM characterization composites. One of the authors, Abhishek K. Pathak, would like to thanks, University grant Commission JRF fellowship. Authors also thank DST, for India-Japan International collaborative project funding.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay R. Dhakate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, A.K., Garg, H., Singh, M. et al. Enhanced interfacial properties of graphene oxide incorporated carbon fiber reinforced epoxy nanocomposite: a systematic thermal properties investigation. J Polym Res 26, 23 (2019). https://doi.org/10.1007/s10965-018-1668-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1668-2

Keywords

Navigation