Skip to main content
Log in

Chitosan reinforced with modified CaCO3 nanoparticles to enhance thermal, hydrophobicity properties and removal of cu(II) and cd(II) ions

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The role of nanoparticles (NPs) in the enhancement of thermal, wettability and adsorption properties of chitosan (CS) was inspired by loading of CaCO3 modified with diacid (DA) based on L- phenyl aniline (2–8 wt%) within the CS by ultrasound agitation. The diameter of CaCO3-DA into the CS extended from 40 to 70 nm. A thermal test on the CS/CaCO3-DA nanocomposite (NC) 2 wt% revealed that T 5 (temperature with 5% weight loss) was increased up to 312 °C, which is twice the value of the pure polymer. The wettability property of the CS/CaCO3-DA NCs was transformed from hydrophilicity to hydrophobicity as the CaCO3-DA NPs concentration was increased. It is due to decrease of the accessibility of the CS polar groups to water. The CS/CaCO3-DA NC 5 wt% was selected as the adsorbent for uptake of metal ions from the wastewater. It showed maximum adsorption capacity of 21.74 and 29.41 mg.g−1 for Cu(II) and Cd(II), respectively. These are attributed to strong complexation reaction between the metal ions and functional groups in the obtained NC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  2. Saada I, Bissessur R (2012) Nanocomposite materials based on chitosan and molybdenum disulfide. J Mater Sci 47:5861–5866

    Article  CAS  Google Scholar 

  3. Liu J, Liu W, Wang Y, Xu M, Wang B (2016) A novel reusable nanocomposite adsorbent, xanthated Fe 3 O 4-chitosan grafted onto graphene oxide, for removing cu (II) from aqueous solutions. Appl Surf Sci 367:327–334

    Article  CAS  Google Scholar 

  4. Guo Y, Ge X, Guan J, et al (2016) A novel method for fabricating hybrid biobased nanocomposites film with stable fluorescence containing CdTe quantum dots and montmorillonite-chitosan nanosheets. Carbohydr Polym 145:13–19

    Article  CAS  Google Scholar 

  5. Chen C, Li D, Shao X (2014) High-performance nanocomposite films: reinforced with chitosan nanofiber extracted from prawn shells. J Mater Sci 49:1215–1221

    Article  CAS  Google Scholar 

  6. Maganti N, Surya V, Pavan K, Thein-Han WW, Pesacreta TC, Misra RDK (2011) Structure–process–property relationship of biomimetic chitosan-based nanocomposite scaffolds for tissue engineering: biological, Physico-chemical, and mechanical functions. Adv Eng Mater 13:108–122

    Article  Google Scholar 

  7. Aryaei A, Jayatissa AH, Jayasuriya AC (2014) Mechanical and biological properties of chitosan/carbon nanotube nanocomposite films. J Biomed Mater Res A 102:2704–2712

    Article  Google Scholar 

  8. Teimouri A, Vahdatpoor N, Habibollahi S, Salavati H, Chermahini AN (2016) Chitosan/zeolite Y/Nano ZrO2 nanocomposite as an adsorbent for the removal of nitrate from the aqueous solution. Int J Biol Macromol 93:254–266

    Article  CAS  Google Scholar 

  9. Kamal MA, Bibi S, Bokhari SW, Siddique AH, Yasin T (2017) Synthesis and adsorptive characteristics of novel chitosan/graphene oxide nanocomposite for dye uptake. React Funct Polym 110:21–29

    Article  CAS  Google Scholar 

  10. Cui J, Kennedy JF, Nie J, Ma G (2015) Co-effects of amines molecules and chitosan films on in vitro calcium carbonate mineralization. Carbohydr Polym 133:67–73

    Article  CAS  Google Scholar 

  11. Ahmad K, Bhatti IA, Muneer M, Iqbal M, Iqbal Z (2012) Removal of heavy metals (Zn, Cr, Pb, cd, cu and Fe) in aqueous media by calcium carbonate as an adsorbent. International Journal of Chemical and Biochemical Sciences 2:48–53

    Google Scholar 

  12. Cruz MAE, Ramos AP (2016) Bioactive CaCO3/poly (acrylic acid)/chitosan hybrid coatings deposited on titanium. Surf Coat Technol 294:145–152

    Article  CAS  Google Scholar 

  13. Zare Y (2016) Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos A: Appl Sci Manuf 84:158–164

    Article  CAS  Google Scholar 

  14. Mallakpour S, Khadem E (2015) Recent development in the synthesis of polymer nanocomposites based on nano-alumina. Prog Polym Sci 51:74–93

    Article  CAS  Google Scholar 

  15. Kim J, Bea SK, Kim YH, Kim D-W, Lee K-Y, Lee C-M (2015) Improved suspension stability of calcium carbonate nanoparticles by surface modification with oleic acid and phospholipid. Biotechnol Bioprocess Eng 20:794–799

    Article  CAS  Google Scholar 

  16. Gradzik B, El Fray M, Wisniewska E (2011) Surface modification of TiO2 and SiO2 nanoparticles for application in polymeric nanocomposites. Chem Aust 65:621–626

    CAS  Google Scholar 

  17. Bosio VE, Cacicedo ML, Calvignac B, et al (2014) Synthesis and characterization of CaCO3–biopolymer hybrid nanoporous microparticles for controlled release of doxorubicin. Colloids Surf B: Biointerfaces 123:158–169

    Article  CAS  Google Scholar 

  18. Peng C, Zhao Q, Gao C (2010) Sustained delivery of doxorubicin by porous CaCO 3 and chitosan/alginate multilayers-coated CaCO3 microparticles. Colloids Surf A Physicochem Eng Asp 353:132–139

    Article  CAS  Google Scholar 

  19. Shan D, Wang S, Xue H, Cosnier S (2007) Direct electrochemistry and electrocatalysis of hemoglobin entrapped in composite matrix based on chitosan and CaCO3 nanoparticles. Electrochem Commun 9:529–537

    Article  CAS  Google Scholar 

  20. Swain SK, Dash S, Kisku SK, Singh RK (2014) Thermal and oxygen barrier properties of chitosan bionanocomposites by reinforcement of calcium carbonate nanopowder. Journal of Materials Science & Technology 30:791–795

    Article  CAS  Google Scholar 

  21. Sun T, Hao W-t, Li J-r, Dong Z-j, Wu C-l (2015) Preservation properties of in situ modified CaCO3–chitosan composite coatings. Food Chem 183:217–226

    Article  CAS  Google Scholar 

  22. Kim S-K (2010) Chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications, chitin, chitosan, oligosaccharides and their derivatives: biological activities and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  23. Zhu Y, Hu J, Wang J (2014) Removal of Co2+ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite. Prog Nucl Energy 71:172–178

    Article  CAS  Google Scholar 

  24. Sharma R, Singh N, Gupta A, Tiwari S, Tiwari SK, Dhakate SR (2014) Electrospun chitosan–polyvinyl alcohol composite nanofibers loaded with cerium for efficient removal of arsenic from contaminated water. J Mater Chem A 2:16669–16677

    Article  CAS  Google Scholar 

  25. Mallakpour S, Moslemi S (2014) Surface functionalized TiO2 nanoparticle designed for the preparation of chiral poly (amide-imide) Bionanocomposites containing phenylalanine linkage. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 44:185–190

    Article  CAS  Google Scholar 

  26. Muralidharan M, Shinu K, Seema A (2016) Optically triggered actuation in chitosan/reduced graphene oxide nanocomposites. Carbohydr Polym 144:115–121

    Article  Google Scholar 

  27. Nivethaa E, Narayanan V, Stephen A (2015) Synthesis and spectral characterization of silver embedded chitosan matrix nanocomposite for the selective colorimetric sensing of toxic mercury. Spectrochim Acta A Mol Biomol Spectrosc 143:242–250

    Article  CAS  Google Scholar 

  28. Motshekga SC, Ray SS, Onyango MS, Momba MN (2015) Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Appl Clay Sci 114:330–339

    Article  CAS  Google Scholar 

  29. Yang X, Xu G, Chen Y, Sui W (2012) CaCO3 crystallization controlled by (2-hydroxypropyl-3-butoxy) propylsuccinyl chitosan. Powder Technol 215:185–194

    Article  Google Scholar 

  30. Nassar M, Farrag T, Mahmoud M, Abdelmonem S, Khalil KA, Barakat NA (2015) Influence of the operating conditions on the morphology of CaCO3 nanoparticles prepared by modified co-precipitation with pulse mode feeding. Adv Powder Technol 26:914–919

    Article  CAS  Google Scholar 

  31. Upadhyay J, Kumar A, Gupta K, Mandal M (2015) Investigation of physical and biological properties of polypyrrole nanotubes–chitosan nanocomposites. Carbohydr Polym 132:481–489

    Article  CAS  Google Scholar 

  32. Mallakpour S, Madani M (2016) Functionalized-MnO 2/chitosan nanocomposites: a promising adsorbent for the removal of lead ions. Carbohydr Polym 147:53–59

    Article  CAS  Google Scholar 

  33. Mironenko AY, Sergeev A, Nazirov A, Modin E, Voznesenskiy S, Bratskaya SY (2016) H2S optical waveguide gas sensors based on chitosan/au and chitosan/ag nanocomposites. Sensors Actuators B Chem 225:348–353

    Article  CAS  Google Scholar 

  34. Mostafa Amin D, Adel Zak E-S, Mohamed Mohamed A-H, Dina Mohamed Diaa B (2012) Thermal stability and degradation of chitosan modified by cinnamic acid. Open J Polym Chem

    Google Scholar 

  35. Ngadiman NHA, Yusof NM, Idris A, Misran E, Kurniawan D (2017) Development of highly porous biodegradable γ-Fe 2 O 3/polyvinyl alcohol nanofiber mats using electrospinning process for biomedical application. Mater Sci Eng C 70:520–534

    Article  CAS  Google Scholar 

  36. Sabaa MW, Abdallah HM, Mohamed NA, Mohamed RR (2015) Synthesis, characterization and application of biodegradable crosslinked carboxymethyl chitosan/poly (vinyl alcohol) clay nanocomposites. Mater Sci Eng C 56:363–373

    Article  CAS  Google Scholar 

  37. Hui B, Ye L (2016) Structure of polyvinyl alcohol-g-acrylic acid-2-acrylamido-2-methyl-1-propanesulfonic acid hydrogel and adsorption mechanism for advanced Pb (II) removal. J Ind Eng Chem 35:309–317

    Article  CAS  Google Scholar 

  38. Tan P, Wen J, Hu Y, Tan X (2016) Adsorption of cu 2+ and cd 2+ from aqueous solution by novel electrospun poly (vinyl alcohol)/graphene oxide nanofibers. RSC Adv 6:79641–79650

    Article  CAS  Google Scholar 

  39. Sõukand Ü, Kängsepp P, Kakum R, Tenno T, Mathiasson L, Hogland W (2010) Selection of adsorbents for treatment of leachate: batch studies of simultaneous adsorption of heavy metals. Journal of Material Cycles and Waste Management 12:57–65

    Article  Google Scholar 

  40. Ma X, Li L, Yang L, et al (2012) Adsorption of heavy metal ions using hierarchical CaCO 3–maltose meso/macroporous hybrid materials: adsorption isotherms and kinetic studies. J Hazard Mater 209:467–477

    Article  Google Scholar 

  41. Shariful MI, Sharif SB, Lee JJL, Habiba U, Ang BC, Amalina MA (2017) Adsorption of divalent heavy metal ion by mesoporous-high surface area chitosan/poly (ethylene oxide) nanofibrous membrane. Carbohydr Polym 157:57–64

    Article  CAS  Google Scholar 

  42. Salehi E, Madaeni S, Rajabi L, et al (2012) Novel chitosan/poly (vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for cu (II) removal from water: preparation, characterization, adsorption kinetics and thermodynamics. Sep Purif Technol 89:309

    Article  CAS  Google Scholar 

  43. Laus R, De Favere VT (2011) Competitive adsorption of cu (II) and cd (II) ions by chitosan crosslinked with epichlorohydrin–triphosphate. Bioresour Technol 102:8769–8776

    Article  CAS  Google Scholar 

  44. Benavente M (2008) Adsorption of metallic ions onto chitosan: equilibrium and kinetic studies

Download references

Acknowledgments

We are grateful to the financial supports of the Research Affairs Division of Isfahan University of Technology (IUT), Iran, National Elite Foundation (NEF), Iran Nanotechnology Initiative Council (INIC), and Center of Excellence in Sensors and Green Chemistry Research (IUT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mallakpour, S., Khadem, E. Chitosan reinforced with modified CaCO3 nanoparticles to enhance thermal, hydrophobicity properties and removal of cu(II) and cd(II) ions. J Polym Res 24, 86 (2017). https://doi.org/10.1007/s10965-017-1241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-017-1241-4

Keywords

Navigation