Skip to main content
Log in

Crystallization, mechanical, and electromagnetic properties of conductive polypropylene/SEBS composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Polypropylene (PP) and styrene–ethylene–butylene–styrene triblock copolymer (SEBS) are blended with a weight ratio of 70/30 to serve as the matrices. The prepared polymer blends were evaluated by tensile, flexural, and Izod impact tests, as well as by differential scanning calorimetry (DSC), optical microscopy, and scanning electron microscopy. The optimal PP/SEBS matrices were then combined with graphene nanosheets (GNs) and carbon fibers (CFs) by a melt compounding method to form conductive polymer composites. The crystallization properties, tensile properties, conductivity, and electromagnetic interference shielding effectiveness (EMISE) of the composites were evaluated by DSC and tensile strength and conductivity tests. In PP/SEBS blends, the SEBS acted as the nucleating agent of PP, thereby increasing the crystallization temperature and accelerating the crystallization rate, without significant influence on the degree of crystallinity. An increase in SEBS loading is inversely proportional to the tensile strength, tensile modulus, flexural strength, and flexural modulus of the PP/SEBS blends, but is highly proportional to the impact strength. In addition, the tensile strength of the conductive PP/SEBS/GN conductive composites decreased with the increase in the amount of GNs, with a percolating threshold of approximately 1.6 vol%. A distinct synergistic effect of the GNs and CFs on the conductive PP/SEBS/GN/CF composites was not achieved until the total loading level was 15 wt%. Optimal conductivity and EMISE of the conductive PP/SEBS/GN/CF composites were achieved at GN/CF ratios of 10/5 wt% and 5/10 wt%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Straat M, Boldizar A, Rigdahl M, Hagstrom B (2011) Improvement of melt Spinning properties and conductivity of immiscible polypropylene/polystyrene blends containing carbon black by addition of Styrene-Ethylene-Butene-Styrene block copolymer. Polym Eng Sci 51(6):1165–1169

    Article  CAS  Google Scholar 

  2. Wen M, Sun XJ, Su L, Shen JB, Li J, Guo SY (2012) The electrical conductivity of carbon nanotube/carbon black/polypropylene composites prepared through multistage stretching extrusion. Polymer 53(7):1602–1610

    Article  CAS  Google Scholar 

  3. Young RJ, Kinloch IA, Gong L, Novoselov KS (2012) The mechanics of graphene nanocomposites: A review. Compos Sci Technol 72(12):1459–1476

    Article  CAS  Google Scholar 

  4. Cao JP, Zhao J, Zhao XD, You F, Yu HZ, Hu GH, Dang ZM (2013) High thermal conductivity and high electrical resistivity of poly(vinylidene fluoride)/polystyrene blends by controlling the localization of hybrid fillers. Compos Sci Technol 89:142–148

    Article  CAS  Google Scholar 

  5. Hsiao ST, Ma CCM, Tien HW, Liao WH, Wang YS, Li SM, Huang YC (2013) Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60:57–66

    Article  CAS  Google Scholar 

  6. Miyazaki K, Okazaki N, Nakatani H (2013) Improvement of electrical conductivity with phase-separation in polyolefin/multiwall carbon nanotube/polyethylene oxide composites. J Appl Polym Sci 128(6):3751–3757

    Article  CAS  Google Scholar 

  7. Huang JR, Mao C, Zhu YT, Jiang W, Yang XD (2014) Control of carbon nanotubes at the interface of a co-continuous immiscible polymer blend to fabricate conductive composites with ultralow percolation thresholds. Carbon 73:267–274

    Article  CAS  Google Scholar 

  8. Zhao SG, Zhao HJ, Li GJ, Dai K, Zheng GQ, Liu CT, Shen CY (2014) Synergistic effect of carbon fibers on the conductive properties of a segregated carbon black/polypropylene composite. Mater Lett 129:72–75

    Article  CAS  Google Scholar 

  9. Calberg C, Blacher S, Gubbels F, Brouers F, Deltour R, Jerome R (1999) Electrical and dielectric properties of carbon black filled co-continuous two-phase polymer blends. J Phys D Appl Phys 32(13):1517–1525

    Article  CAS  Google Scholar 

  10. Drubetski M, Siegmann A, Narkis M (2007) Electrical properties of hybrid carbon black/carbon fiber polypropylene composites. J Mater Sci 42(1):1–8

    Article  CAS  Google Scholar 

  11. Shen L, Wang FQ, Yang H, Meng QR (2011) The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend. Polym Test 30(4):442–448

    Article  CAS  Google Scholar 

  12. Thongruang W, Spontak RJ, Balik CM (2002) Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber. Polymer 43(8):2279–2286

    Article  CAS  Google Scholar 

  13. Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67(10):2045–2051

    Article  CAS  Google Scholar 

  14. Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36(5):638–670

    Article  CAS  Google Scholar 

  15. McLachlan DS, Chiteme C, Park C, Wise KE, Lowther SE, Lillehei PT, Siochi EJ, Harrison JS (2005) AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci Polym Phys 43(22):3273–3287

    Article  CAS  Google Scholar 

  16. Shrivastava NK, Khatua BB (2011) Development of electrical conductivity with minimum possible percolation threshold in multi-wall carbon nanotube/polystyrene composites. Carbon 49(13):4571–4579

    Article  CAS  Google Scholar 

  17. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  CAS  Google Scholar 

  18. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  19. Zhang HB, Zheng WG, Yan Q, Yang Y, Wang JW, Lu ZH, Ji GY, Yu ZZ (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5):1191–1196

    Article  CAS  Google Scholar 

  20. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52(1):5–25

    Article  CAS  Google Scholar 

  21. Chen YJ, Dung ND, Li YA, Yip MC, Hsu WK, Tai NH (2011) Investigation of the electric conductivity and the electromagnetic interference shielding efficiency of SWCNTs/GNS/PAni nanocomposites. Diam Relat Mater 20(8):1183–1187

    Article  Google Scholar 

  22. Lin C-W, Lin Z-Y, Lou C-W, Kuo T-L, Lin J-H (2015) Wood plastic composites: using carbon fiber to create electromagnetic shielding effectiveness. J Thermoplast Compos 28(7):1047–1057

    Article  CAS  Google Scholar 

  23. Lin J-H, Huang C-L, Lin Z-I, Lou C-W (2015) Far-infrared emissive polypropylene/wood flour wood plastic composites: Manufacturing technique and property evaluations. J Compos Mater. doi:10.1177/0021998315602137

    Google Scholar 

  24. Lin J-H, Lin C-W, Huang C-H, Huang C-L, Lou C-W (2013) Manufacturing technique and mechanical properties of plastic nanocomposite. Compos Part B- Eng 44(1):34–39

    Article  CAS  Google Scholar 

  25. Lou C-W, Lin C-W, Huang C-H, Hsieh C-T, Lin J-H (2013) Compatibility and mechanical properties of maleicanhydride modified the wood plastic composite. J Reinf Plast Compos 32(11):802–810

    Article  Google Scholar 

  26. Lou C-W, Lin C-W, Lei C-H, Su K-H, Hsu C-H, Liu Z-H, Lin J-H (2007) PET/PP blend with bamboo charcoal to produce functional composites. J Mater Process Technol 192–193:428–433

    Article  Google Scholar 

  27. Su K-H, Lin J-H, Lin C-C (2007) Influence of reprocessing on the mechanical properties and structure of polyamide 6. J Mater Process Technol 192–193:532–538

    Article  Google Scholar 

  28. Huang C-L, Wang Y-J, Fan Y-C (2016) Morphological features and crystallization behavior of the conductive composites of poly(trimethylene terephthalate)/graphene nanosheets. J Appl Polym Sci 133(19). doi:10.1002/app.43419

  29. Lin J-H, Lin Z-I, Pan Y-J, Huang C-L, Chen C-K, Lou C-W (2016) Polymer composites made of multi-walled carbon nanotubes and graphene nano-sheets: effects of sandwich structures on their electromagnetic interference shielding effectiveness. Compos Part B- Eng 89:424–431

    Article  CAS  Google Scholar 

  30. Wang C, Chiu Y-C (2015) Isothermal crystallization of syndiotactic polystyrene induced by graphene nanosheets and carbon nanotubes: a comparative study. J Polym Res 22(5):1–8

    Article  Google Scholar 

  31. Denac M, Smit I, Musil V (2005) Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 1. structure. Compos Part a-Appl S 36(8):1094–1101

    Article  Google Scholar 

  32. Denac M, Musil V, Smit I (2004) Structure and mechanical properties of talc-filled blends of polypropylene and styrenic block copolymers. J Polym Sci Polym Phys 42(7):1255–1264

    Article  CAS  Google Scholar 

  33. Tjong SC, Xu SA, Li RKY, Mai YW (2002) Mechanical behavior and fracture toughness evaluation of maleic anhydride compatibilized short glass fiber/SEBS/polypropylene hybrid composites. Compos Sci Technol 62(6):831–840

    Article  CAS  Google Scholar 

  34. Denac M, Musil V, Smit I (2005) Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 2. mechanical properties. Compos Part a-Appl S 36(9):1282–1290

    Article  Google Scholar 

  35. Veenstra H, van Lent BJJ, van Dam J, de Boer AP (1999) Co-continuous morphologies in polymer blends with SEBS block copolymers. Polymer 40(24):6661–6672

    Article  CAS  Google Scholar 

  36. Xu G, Shi WF, Gong M, Yu F, Feng JP (2004) Photopolymerization and toughening performance in polypropylene of hyperbranched polyurethane acrylate. Eur Polym J 40(3):483–491

    Article  CAS  Google Scholar 

  37. Yang X, Zhan Y, Yang J, Zhong J, Zhao R, Liu X (2011) Synergetic effect of cyanogen functionalized carbon nanotube and graphene on the mechanical and thermal properties of poly (arylene ether nitrile). J Polym Res 19(1):1–6

    Google Scholar 

  38. Lin J-H, Lin Z-I, Pan Y-J, Hsieh C-T, Huang C-L, Lou C-W (2016) Thermoplastic polyvinyl alcohol/multiwalled carbon nanotube composites: preparation, mechanical properties, thermal properties, and electromagnetic shielding effectiveness. J Appl Polym Sci 133(21). doi:10.1002/app.43474

  39. Ren F, Zhu G, Wang Y, Cui X (2014) Microwave absorbing properties of graphene nanosheets/epoxy-cyanate ester resins composites. J Polym Res 21(11):1–7

    Article  Google Scholar 

  40. Liu P, Huang Y (2014) Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties. J Polym Res 21(5):1–5

    Article  Google Scholar 

  41. Li H, Wu S, Wu J, Huang G (2014) Enhanced electrical conductivity and mechanical property of SBS/graphene nanocomposite. J Polym Res 21(5):1–8

    Article  Google Scholar 

  42. Gupta TK, Singh BP, Teotia S, Katyal V, Dhakate SR, Mathur RB (2013) Designing of multiwalled carbon nanotubes reinforced polyurethane composites as electromagnetic interference shielding materials. J Polym Res 20(6):1–7

    Article  Google Scholar 

  43. Lin C-W, Lou C-W, Huang C-H, Huang C-L, Lin J-H (2014) Electromagnetically shielding composite made from carbon fibers, glass fibers, and impact-resistant polypropylene: Manufacturing technique and evaluation of physical properties. J Thermoplast Compos Mater 27(11):1451–1460

    Article  CAS  Google Scholar 

  44. Lin J-H, Lin Z-I, Pan Y-J, Chen C-K, Huang C-L, Huang C-H, Lou C-W (2016) Improvement in mechanical properties and electromagnetic interference shielding effectiveness of PVA-Based composites: synergistic effect between graphene Nano-sheets and multi-walled carbon nanotubes. Macromol Mater Eng 301(2):199–211

    Article  CAS  Google Scholar 

  45. Pang H, Piao Y-Y, Cui C-H, Bao Y, Lei J, Yuan G-P, Zhang C-L (2013) Preparation and performance of segregated polymer composites with hybrid fillers of octadecylamine functionalized graphene and carbon nanotubes. J Polym Res 20(11):1–8

    Article  CAS  Google Scholar 

  46. Song J, Yuan Q, Zhang H, Huang B, Fu F (2015) Elevated conductivity and electromagnetic interference shielding effectiveness of PVDF/PETG/carbon fiber composites through incorporating carbon black. J Polym Res 22(8):1–8

    Article  CAS  Google Scholar 

  47. Xu Y, Xu W, Bao J (2014) A high performance electromagnetic interference shielding epoxy composite with multiple conductive networks in the matrix. J Polym Res 21(8):1–8

    Article  Google Scholar 

Download references

Acknowledgments

The authors would especially like to thank Ministry of Science and Technology of Taiwan, for financially supporting this research under Contract MOST 104-2221-E-035-092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Horng Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, CW., Huang, CL., Pan, YJ. et al. Crystallization, mechanical, and electromagnetic properties of conductive polypropylene/SEBS composites. J Polym Res 23, 84 (2016). https://doi.org/10.1007/s10965-016-0979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0979-4

Keywords

Navigation